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Abstract
Background  Small cell lung cancer (SCLC) is an aggressive malignancy with distinct molecular subtypes defined by 
transcription factors and inflammatory characteristics. This follow-up study aimed to validate the unique metabolic 
phenotype in achaete-scute homologue 1 (ASCL1)-driven SCLC cell lines and human tumor tissue.

Methods  Metabolic alterations were analyzed using proteomic data. Structural and functional differences of 
mitochondria were investigated using qPCR, flow cytometry, confocal imaging, and transmission electron microscopy 
and seahorse assays. Several metabolic inhibitors were tested using MTT-based and clonogenic assays. Single-cell 
enzyme activity assays were conducted on cell lines and tumor tissue samples of SCLC patients.

Results  We found increased mitochondrial numbers correlating with higher oxidative phosphorylation activity in 
ASCL1-dominant cells compared to other SCLC subtypes. Metabolic inhibitors targeting mitochondrial respiratory 
complex-I or carnitine palmitoyltransferase 1 revealed higher responsiveness in SCLC-A. Conversely, we demonstrated 
that non-ASCL1-driven SCLCs with lower oxidative signatures show dependence on glutaminolysis as evidenced by 
the enhanced susceptibility to glutaminase inhibition. Accordingly, we detected increased glutamate-dehydrogenase 
activity in non-ASCL1-dominant cell lines as well as in human SCLC tissue samples.

Conclusions  Distinct SCLC subtypes exhibit unique metabolic vulnerabilities, suggesting potential for subtype-
specific therapies targeting the respiratory chain, fatty acid transport, or glutaminolysis.
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Introduction
Lung cancer remains the leading cause of cancer-related 
deaths worldwide. Approximately 13–15% of all lung can-
cer cases are classified as small cell lung cancer (SCLC) 
[1]. SCLC is characterized by an exceptionally poor prog-
nosis, partly due to a high proliferation rate and early 
metastatic dissemination [2]. For decades, the standard 
of care therapeutic regimen for SCLC patients comprised 
a combination of platinum-based chemotherapy and 
etoposide [3]. The immune checkpoint inhibitors (ICIs) 
atezolizumab and durvalumab recently gained approval 
for the treatment of SCLC [4, 5]. From the molecu-
lar perspective, almost all SCLCs feature simultaneous 
inactivation of the genes TP53 and RB1; however, being 
loss-of-function mutations, these inactivated tumor sup-
pressors cannot be specifically targeted to date [6, 7].

Although several classification schemes have been pro-
posed during the past few years in an attempt to define 
key expression profiles and corresponding vulnerabilities, 
current clinical treatment protocols are exclusively based 
on disease stage irrespective of the underlying molecular 
profile [8]. One recent preclinical classification of SCLC 

is based on the transcription regulators achaete-scute 
homologue 1 (ASCL1), neurogenic differentiation fac-
tor 1 (NEUROD1), POU class 2 homeobox 3 (POU2F3) 
and yes-associated protein 1 (YAP1) [8]. However, YAP1 
was recently questioned by multiple authors regarding 
its independent role to define a SCLC subtype as valida-
tion studies could not identify YAP1 expressions in clini-
cal samples [9, 10]. Concomitant ASCL1/ NEUROD1 
(SCLC-AN) expressing tumors [10] as well as inflamed 
SCLCs have been recently described [1, 11, 12]. Impor-
tantly, high ASCL1 expression levels have been demon-
strated to be independent negative prognosticators in 
surgically treated patients [9, 13].

Malignant transformation requires high amounts of 
energy. Therefore, metabolic reprogramming is one of 
the hallmarks of cancer. Various types of cancer, includ-
ing lung or breast cancers, have been associated with 
the well-known Warburg effect [14]. This non-oxidative 
process is a very inefficient way of ATP production com-
pared to aerobic oxidative phosphorylation [15]. Addi-
tional evidence indicates that metabolic reprogramming 
in cancer cells is fundamental to meet their high demand 
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in building molecules with high-energy bonds such as 
ATP [16]. Overall, more recently published metabolic 
research highlights that cancer metabolism should be 
seen as a continuous process in which the reverse War-
burg effect can equally take place, depending on the local 
milieu [17].

Recently, our group published distinct proteomic pro-
files of the SCLC molecular subtypes in cell lines char-
acterized by the expression of ASCL1, NEUROD1, 
POU2F3, and YAP1 (SCLC-A/N/P/Y, respectively), sug-
gesting oxidative phosphorylation as a unique signa-
ture for SCLC-A [18]. In the current study, we aimed to 
elucidate this unique metabolic phenotype of SCLC-A, 
shifting to oxidative phosphorylation and mitochondria-
related processes including cellular response to fatty 
acids and other metabolites. To that aim, we performed 
structural and functional analysis of mitochondria in 
SCLC cell lines and human tumor tissue specimens. 
Here, we report differences in mitochondrial num-
ber and shape in addition to increased aerobic respira-
tion between SCLC subtypes. We also demonstrate that 
SCLC cells associated with high ASCL1 expression are 
more susceptible to the blockage of mitochondrial respi-
ratory complex I (NADH dehydrogenase) and, moreover, 
that non-ASCL1-driven cells are more susceptible to glu-
taminolysis inhibition, which may allow future subtype-
specific personalized therapy.

Materials and methods
Cell culture and tissue specimens
All human SCLC cell lines used in this study were either 
obtained from collaborators or purchased from the 
American Type Culture Collection (ATCC; authenti-
cated by STR profiling) in 2017 and 2024. Cells were 
cultivated at 37 °C and 5% CO2 and maintained in RPMI 
1640 medium supplemented with 10% heat-inactivated 
fetal-bovine serum (Sigma Chemical Co., St. Louis, MO). 
The cultures were regularly tested for Mycoplasma con-
tamination and experiments were conducted within 15 
passages after authentication. Additional experiments 
were performed using RPMI media without glucose or 
l-glutamine (Gibco, Grand Island, New York, USA) under 
normoxic and hypoxic conditions using a c-chamber 
equipped with a ProOxC21O2/CO2 Controller (Bio-
spherix NY, USA), respectively. Hypoxic conditions were 
predefined using 5% CO2/ 1% O2. Tissue sampling was 
conducted from rapid research autopsies at the National 
Koranyi Institute of Pulmonology (Budapest, Hungary) as 
recently described [19]. Primary tumors were collected 
within four hours after death and immediately snap-fro-
zen in liquid nitrogen. Rapid autopsies were carried out 
in accordance with the Declaration of Helsinki. Written 
informed consent was obtained from all patients and 

approved by the National Hungarian Ethics Committee 
(BM/15090-1/2023).

Flow cytometry
Cells (5 × 105) were stained with 100 nM MitoTracker 
Red CMXROS (Molecular Probes, Eugene, Oregon, 
United States) or 1 nM Bodipy 493/503 (Thermo Scien-
tific, Waltham, MA, USA) for 15 min at room tempera-
ture in the dark. After incubation, cells were analyzed 
by flow cytometry using a DxFlex Clinical Flow Cytom-
eter (Beckman Coulter, Brea, California, USA) and signal 
intensity was determined. The mean intensity of each cell 
line was standardized to unstained controls and data was 
further analyzed in GraphPad Prism 8.0.

JC-1 assay
Mitochondrial membrane potential was quantified using 
the JC-1 Mitochondrial Membrane Potential Assay Kit 
(ab113850, Abcam). Briefly, cells (2 × 104) were seeded 
into a black-plate, clear-bottom 96-well plate. The follow-
ing day, cells were treated with either 100 µM carbonyl 
cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) or 
vehicle control (DMSO) for 4  h. JC-1 (10 µM) dye was 
then added to each well for 30 min at 37 °C. After several 
washing steps, JC-1 monomers and aggregates were mea-
sured at 535 nm and 590 nm, respectively, using a Vari-
oScan Lux microplate reader (Thermo Scientific).

Cell viability assays
Cells (5–7.5 × 103) were seeded into 96-well F-bottom 
plates. After 24 h incubation, perhexiline (MedChemEx-
press, Monmouth Junction, NJ, USA), metformin (Glu-
cophage, Merck, Darmstadt, Germany), IACS-010759 
(MedChemExpress), UK5099 (MedChemExpress), 
BPTES (MedChemExpress), 2-Deoxy-D-glucose (Med-
ChemExpress), oligomycin (MedChemExpress), or orli-
stat (MedChemExpress) was added in ascending doses 
as indicated. Inhibitors were incubated for 72 h at 37 °C 
prior to measurement. After a total of 96 h, growth assays 
were either developed with EZ4U substrate (measure-
ment at 450 nm and 620 nm, Biomedica, Vienna, Austria) 
or quantified using SYBR green as previously described 
[20].

Clonogenic assay
For long-term assessment of drug treatment, cells 
(2 × 103) were seeded in 6-well plates and incubated over-
night. Metformin (0.5 µM), IACS-010759 (10 nM) and 
oligomycin (10 nM) were added and plates were incu-
bated for two weeks. Cells were fixed with 70% ethanol 
for 30 min and air dried. Staining with crystal violet was 
performed at room temperature for 2  h. Each well was 
washed multiple times with water and destained using 
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a 2% SDS solution. Photometric measurement was per-
formed at 562 nm.

DNA isolation and qPCR
DNA was isolated using the AllPrep DNA/RNA/miRNA 
Universal Kit (Qiagen, Venlo, Netherland). Viable cells 
were seeded in 6-well plates (5 × 105) and incubated over-
night. DNA isolation was performed according to the 
manufacturer´s instructions and DNA content was mea-
sured using a nanodrop photospectrometer. The relative 
mitochondrial DNA copy number was determined via 
qPCR using the following primers: ND1_F, 5′-​C​C​C​T​A​A​
A​A​C​C​C​G​C​C​A​C​A​T​C​T-3′, ND1_R, 5′-​G​A​G​C​G​A​T​G​G​T​G​
A​G​A​G​C​T​A​A​G​G​T-3′; HGB_F, 5′-​G​T​G​C​A​C​C​T​G​A​C​T​C​C​
T​G​A​G​G​A​G​A-3′, HGB_R, 5′-​C​C​T​T​G​A​T​A​C​C​A​A​C​C​T​G​
C​C​C​A​G-3′, as described elsewhere [21]. qPCR was per-
formed on a 7500 Fast Real-Time PCR System (Applied 
Biosystems, Waltham, MA, USA) using a Maxima SYBR 
green/ROX qPCR Master Mix (Thermo Scientific) [22]. 
Mitochondrial content was described as 2−∆Ct between 
the mitochondrial ND1 and the nuclear HBG.

Fluorescence microscopy
Cells (2 × 104) were seeded in Ibitreat 8-well chamber 
slides (IBIDI, Gräfelfing, Germany) and incubated over-
night. Cells were stained with 0.1 µM MitoTracker Red 
CMXROS (Molecular Probes) and 4′,6-diamidino-
2-phenylindole (DAPI). Imaging was performed using an 
Olympus/Evident IXplore SpinSR spinning disk confocal 
microscope with Yokogawa disc (EVIDENT Corpora-
tion, Tokyo, Japan). A 100x objective together with a 3.2x 
magnification changer was used to yield a total magni-
fication of 320x. The excitation of 561  nm was used to 
detect the red fluorophore followed by emission filtering 
using 617/73 nm. For enhanced super resolution perfor-
mance, a SoRa spinning disc (Yokogawa Electric Cor-
poration, Tokyo, Japan) was selected. Data acquisition 
was performed using the ORCA-Fusion Digital CMOS 
Camera C14440-20UP (HAMAMATSU PHOTONICS 
K.K. Tokyo, Japan). Automated imaging analysis was 
conducted using deep learning neuronal networking via 
the CellSens Dimension software (version 4.1) for SCLC 
cell lines. The neuronal network was trained manually on 
representative areas for subsequent automated imaging.

Oil red staining
Intracellular fat compartments were stained using oil 
red (Sigma, St. Louis, MO, USA) in isopropanol. Cul-
tured cells were counted and 2.5 × 104 cells were used for 
cytospin preparation. Subsequently, slides were snap-
frozen in liquid nitrogen and stored at -80  °C. Prior to 
staining, the slides were thawed following 20  min incu-
bation with diluted oil red solution (60% isopropanol). 
Counterstaining was conducted for 5  min using Gill´s 

hematoxylin (Merck). Slides were scanned using a SCAN 
II (3DHistech, Budapest, Hungary) automated slidescan-
ner for bright-field images and evaluated using ImageJ.

Transmission electron microscopy (TEM)
For spheroid generation, cells were seeded in RPMI (10% 
FCS, 20% methylcellulose) in round bottom 96-well sus-
pension plates (Sarstedt, Nümbrecht Germany). Spher-
oids were allowed to grow for 48 h prior to fixation and 
embedding. TEM was performed using a FEI Tecnai G2 
20 equipped with a FEI Eagle 4  K CCD-Camera at the 
Electron Microscopy Facility in the Center for Anatomy 
and Cell Biology (Medical University of Vienna, Austria). 
Images were acquired using 80  kV and evaluated using 
ImageJ.

Determination of cell size
Cells were harvested and placed on a cover slip. Pic-
tures were taken with a Micro Ti Eclipse FL microscope, 
(Nikon, Minato City, Tokyo, Japan). At least 50 individual 
cells were measured with ImageJ and the volume calcu-
lated using the formula V = 4/3*r3*π.

Seahorse assays
The cell lines DMS53 (12 × 103) and H372 (6 × 103) were 
seeded in Seahorse XFp Cell Culture Microplates to 
obtain 80% confluence and incubated overnight. The sen-
sor cartridge was hydrated in calibrant and incubated 
at 37 °C in a non-CO2 incubator. On the next day, assay 
medium was prepared (1 mM pyruvate, 2 mM glutamine 
and 10 mM glucose) and added to each well after three 
washing steps. Inhibitor solutions were prepared to yield 
a final concentration of 1.5 µM oligomycin, 2 µM FCCP 
and 0.5 µM rotenone/antimycin A for the Seahorse XF 
Mito Stress Test and 3 µM BPTES, 4 µM etomoxir and 
2 µM UK5099 for the Seahorse XF Mito Fuel Flex Test. 
Inhibitors were loaded into injection points of sensor 
cartridges and Hoechst 33258 Staining Dye Solution 
(Abcam, Cambridge, United Kingdom) was added to port 
four at a final concentration of 4 µM. Hoechst 33250 dye 
was used to normalize the data on cell count using Cyta-
tion and the Gen5 Software. Assays were performed and 
analyzed using the Wave Pro 10.1.0.1 software and the 
Seahorse XF Cell Mito Stress Test/ Mito Fuel Flex Test 
Report Generator.

GSH/GSSG assay
Levels of glutathione (GSH) and glutathione disulfide 
(GSSG) were determined using the GSH/GSSG-Glo 
Assay (Promega, Wisconsin, USA) according the manu-
facturer’s instructions. Cells (2 × 104) were seeded onto 
a white opaque 96-well plate and incubated overnight. 
Luminescence signals were measured using a VarioScan 
Lux microplate reader (Thermo Scientific).
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Fig. 1 (See legend on next page.)
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Enzyme activity assay
Cellular and tissue enzyme activity assays for succinate 
dehydrogenase (SDH), lactate dehydrogenase (LDH), iso-
citrate dehydrogenase (IDH), glutamate dehydrogenase 
(GDH), and 3 hydroxyacyl coenzyme A dehydrogenase 
(HAD) were performed based on previously reported 
enzymehistochemistry methods [23, 24]. In brief, 7 × 104 
cells were seeded onto round glass cover slips (Carl Roth) 
in a 24-well plate, incubated overnight, washed with 1x 
phosphate-buffered saline (PBS), and subsequently fro-
zen at -80 °C. Activity assays were performed by thawing 
slides for 3 min at RT and then incubating sections with 
an enzyme specific reaction mixture in 0.1 M Tris-Male-
ate buffer at pH 8.5 for HAD, pH8 for GDH or pH 7.5 for 
LDH and IDH3 containing: 10% polyvinyl alcohol, 0.45 
mM methoxy-phenanzine methosulfate, 5 mM sodium 
azide, 2 mM nitroblue tetrazolium chloride. The 0.1  M 
Tris-HCl buffer at pH 8 for mitochondrial SDH activities 
contained 0.2 mM phenanzine methosulfate instead of 
methoxyphenanzine methosulfate. To ensure specificity 
of the signals, we additionally included enzyme inhibitors 
sodium oxamate (100 mM) for LDH, oxaloacetic acid 
(100 mM) for IDH3, malonic acid (250 mM) for SDH, 
ATP (50.5 mM) for GDH and no substrate for HAD in 
the reaction mixtures as negative controls. Enzyme activ-
ity was developed for 15  min (LDH, HAD) and 20  min 
(SDH, IDH, GDH) for SCLC cell lines. The activity assays 
were stopped by washing with pre-warmed (60  °C) PBS 
and cells were stained with DAPI for nuclear cell segmen-
tation and mounted with Fluoromount-G. Imaging and 
corresponding analysis was performed using an Olympus 
ix83 WF inverted microscope. The CellSens Dimension 
software (version 4.1) in combination with the “Deep 
learning” and “Count and Measure” packages were used. 
Automated object detection was conducted using neuro-
nal network based on manual training and labeling. The 
single-cell enzyme activity values of 20 representative 
images were used for statistical analysis. Rapid autopsy 
samples were used for tissue-based analysis. Tumors 
were cut into 5  μm cryosections using a Cryostat Leica 
CM3050 and all five enzymes were analyzed. The devel-
opment took 4 min for LDH and HAD, 15 min for IDH, 
18 min for GDH, and 20 min for SDH. Images were again 
acquired using the Olympus ix83 WF inverted micro-
scope and staining intensity was evaluated using the 
HALO software (Indica labs, Albuquerque, USA).

Immunohistochemistry
Formalin-fixed, paraffin-embedded primary tumors 
obtained from rapid research autopsies were cut in 
4 μm sections. ASCL1, NEUROD1, POU2F3, and YAP1 
expressions were examined by immunohistochemis-
try (IHC). In brief, the sections were deparaffinized and 
heated in 10 mM citrate buffer (pH 6.0) in a pressure 
cooker for 20 min, except for NEUROD1 staining. These 
slides were heated in 10 mM Tris-EDTA (pH 9.0). Non-
specific background staining was reduced using 0.3% 
H2O2 solution for 10 min. Antibody incubation was per-
formed using anti-ASCL1 (BD Bioscience, San José, CA, 
#556604, 1:50), anti-NEUROD1 (Abcam, Cambridge, UK, 
#ab213725, 1:100), anti-POU2F3 (Santa Cruz Biotechnol-
ogy, Dallas, TX, #sc-293402, 1:100), and anti-YAP1 (Cell 
Signaling Technology, Leiden, The Netherlands, #4912, 
1:200) as described elsewhere [9, 25]. Antibody binding 
was visualized by using the ImmPACT DAB Substrate Kit 
(Vector Laboratories, Newark, California, United States) 
and nuclei were counterstained using hematoxylin.

Proteomics and biostatistical analysis
For the analyses shown in Fig. 1, we used our previously 
published proteomic dataset [18]. All details regarding 
sample preparation, mass spectrometry, and data pro-
cessing are described in this publication. We re-analyzed 
the dataset by comparing SCLC-A (DMS153, DMS53, 
SHP77, H146, H1688, H1882, H209, H378) to all non-
SCLC-A cell lines (GLC4, H1694, H2171, H446, H524, 
H82, N417, COR-L311, H1048, H211, H526, CRL-2066, 
CRL-2177, H1341, H196, H372, H841, HLHE). Gene set 
enrichment analysis (GSEA) was performed using the 
GSEA software version 4.3.2 [26, 27]. For further bio-
statistical analysis, t-tests between SCLC-A cell lines 
and non-SCLC-A cell lines (SCLC-N/P/Y) using the 
normalized log2 protein intensities were performed, 
and p-value < 0.05 was considered statistically signifi-
cant. ToppCluster pathway analysis was conducted using 
the Cincinnati Children´s Biomedical Informatics Tool 
[28]. Databases that were considered for these analy-
ses comprise KEGG (Kyoto Encyclopedia of Genes and 
Genomes) pathways, Gene ontology of biological pro-
cesses, and the Hallmark gene set collection [29, 30, 31].

In Fig. 2, several publicly available databases for patent-
derived proteomic and transcriptomic data were used. 
Due to the high prevalence of mixed subtypes in SCLC 

(See figure on previous page.)
Fig. 1  ASCL1 expression is associated with an oxidative phenotype in SCLC according to proteomic data. (A) ToppCluster analysis of significantly over-
expressed proteins in the SCLC-A subtype (DMS153, DMS53, SHP77, H146, H1688, H1882, H209, H378) based on the comparison to non-SCLC-A cell lines 
(GLC4, H1694, H2171, H446, H524, H82, N417, COR-L311, H1048, H211, H526, CRL-2066, CRL-2177, H1341, H196, H372, H841, HLHE). The FDR cut-offs 
for KEGG (illustrated as a circle) and GOPB (shown as squares) pathways were 0.05 and 0.01, respectively. Hexagons imply the proteins related to the 
significant pathways. (B) Significantly overexpressed proteins COX4I1, COX5B and NDUFA5 in SCLC-A (blue) in SCLC-A cell lines compared to SCLC-N/P/Y 
(orange). Statistical significance was evaluated using the Kruskal-Wallis test. Data are represented as mean ± SEM. (C) Gene set enrichment analysis (GSEA) 
showing enriched oxidative phosphorylation in SCLC-A. (D) Differentially expressed pathways in SCLC-A resulting from GSEA. The y-axis indicates the 
normalized enrichment score (NES). * p ≤ 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
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patients, pre-ranked GSEA was performed, with pro-
teins/genes ranked based on their Pearson correlation 
against the ASCL1 gene expression. The analysis was per-
formed using the GSEA function from clusterProfiler R 
package v4.12.6. Genesets from MSigDB v2024.1 were 
tested. GSEA plots were made with enrichplot R pack-
age v1.24.4. From the study of Liu et al. proteomic and 
transcriptomic data were used [32]. The 107 primary 
SCLC samples were annotated with their ASCL1 gene 
expression. The normalized protein and gene expression 
data were retrieved from Table S1 of the publication. 
Only proteins without missing expression values were 
kept (this step was not relevant for the transcriptomic 
data). To rank the proteins/genes for pre-ranked GSEA, 
the expression values were correlated with the samples’ 
corresponding ASCL1 gene expression using Pearson 
correlation. These correlation coefficients were used for 
ranking. Transcriptomic data from George et al. [7] was 
accessed from cBioPortal as previously described [33] 
The 78 primary and 3 metastatic SCLC samples were 
annotated with their ASCL1 gene expression (Z-score 
normalized expression values). Only rows without miss-
ing expression values were kept. Transcriptomic data 
from the Cancer Cell Line Encyclopedia (CCLE) was 
accessed and processed as previously described in Szeitz 
et al. [33] The 50 SCLC cell lines were annotated with 
their ASCL1 gene expression. The gene expression data 
were retrieved from the Cancer Dependency Map web-
site and then processed to get the CPM-normalized 
data. To rank the genes for pre-ranked GSEA, for both 
datasets, the expression values were correlated with the 
samples’ corresponding ASCL1 gene expression using 
Pearson correlation. When multiple rows (transcripts) 
matched to the same gene, then their correlation values 
were averaged. These correlation coefficients were used 
for ranking of the genes. The proteomic data from Table 3 
of Goncalves et al. [34] was accessed as normalized pro-
tein expression. Out of all SCLC cell lines, 36 were also 
part of the CCLE transcriptomic data, and those cell 
lines were annotated with their ASCL1 gene expression 
(CPM-normalized expression values). Only proteins 
without missing expression values were kept. To rank 
the proteins for pre-ranked GSEA, the expression values 
were correlated with the samples’ corresponding ASCL1 
gene expression using Pearson correlation. Proteins with-
out gene names were removed, and when multiple rows 
(proteins) matched to the same gene, then their correla-
tion values were averaged. These correlation coefficients 
were used for ranking of the genes.

Statistical analysis for the respective figures was per-
formed in GraphPad Prism 8. Unless stated otherwise, 
results are shown as mean ± SEM of at least three inde-
pendent biological experiments. Differences were evalu-
ated by Student’s T-test or ANOVA for comparisons of 

two or multiple groups, respectively, and considered sta-
tistically significant at p ≤ 0.05. (* p ≤ 0.05, ** p < 0.01, *** 
p < 0.001, **** p < 0.0001).

Results
The SCLC-A subtype is associated with higher oxidative 
phosphorylation and altered core metabolic processes
Previously published proteomic data on human SCLC 
cell lines revealed that the ASCL1-driven SCLC-A 
molecular subtype features a distinct metabolic phe-
notype, indicating a shift toward increased oxidative 
phosphorylation (OXPHOS) [18]. We now re-analyzed 
the proteome by grouping the cells into SCLC-A (n = 8) 
versus all non-SCLC-A subtypes together (n = 18), 
according to the predominant expression of the respec-
tive transcription factors ASCL1 (A), NEUROD1 (N), 
POU2F3 (P) and YAP1 (Y). Subsequent comprehensive 
ToppCluster analysis of proteins differentially expressed 
in SCLC-A vs. non-SCLC-A confirmed enrichment in 
OXPHOS and other core respiratory mechanisms, which 
highlights the unique metabolic nature of this SCLC sub-
type (Fig.  1A). According to a more detailed pairwise 
comparison, SCLC-A showed a significant upregulation 
of proteins Cytochrome C Oxidase Subunit 4 Isoform 1 
(COX4I1), Cytochrome C Oxidase Subunit 5B (COX5B) 
and NADH Dehydrogenase (Ubiquinone) 1 Alpha Sub-
complex 5 (NDUFA5) as compared to other (N/P/Y-
expressing) subtypes, indicating increased mitochondrial 
activity (Fig.  1B). Notably, numerous other mitochon-
drial proteins involved in the electron transport chain 
and controlling mitochondrial dynamics were found to 
be dysregulated as illustrated in Supplementary Figures 
S1 and S2, but only NDUFA5, COX4I1 and COX5B were 
uniformly significantly upregulated within each pairwise 
subtype comparison.

To gather more information about the underlying cel-
lular mechanisms with a focus on metabolic changes, we 
performed gene set enrichment analysis (GSEA) com-
paring all SCLC-A versus all non-SCLC-A cell lines. 
Intriguingly, more than half of the top 50 biological pro-
cesses (ranked by the respective normalized enrichment 
score (NES)) were related to mitochondrial metabolism 
(Supplementary Table 1). Metabolic changes included 
significant enrichment in oxidative phosphorylation 
(NES = 1.82, p = 0.02), NADH dehydrogenase complex 
assembly (NES = 1.82, p = 0.012), cellular response to fatty 
acid (NES = 1.62, p = 0.008), and positive regulation of 
mitochondrial fission (NES = 1.59, p = 0.022). Addition-
ally, mitochondrial fusion was enriched in SCLC-A cells, 
although not meeting the threshold for statistical signifi-
cance (NES = 1.43, p = 0.11) (Fig. 1 C and D).
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Fig. 2  ASCL-1 expression correlates with reduced GDH activity and enrichment for oxidative phosphorylation in patient-derived tumor samples. (A) 
Average positive intensity of GDH in snap frozen primary tumors of SCLC patients. Orange and blue color indicate non-SCLC-A and SCLC-A-dominant 
phenotypes, respectively. (B) Corresponding representative images depicting ASCL1 expression (left) and GDH activity (right) in non-SCLC-A and SCLC-
A-dominant primary tumors. Scale bar: 100 μm. Normalized enrichment scores (NES) and p-values of pre-ranked GSEA analyses of publicly available 
databases using the (C) KEGG and (D) GOBP geneset. The dotted lines indicate the treshold for statistical significance (p < 0.05). Representative GSEA plots 
from the Liu et al. dataset are shown
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Fig. 3 (See legend on next page.)
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SCLC-A is associated with higher mitochondrial content
To functionally assess the role of oxidative phosphor-
ylation, we used a panel of six SCLC cell lines with 
the highest (DMS53, SHP77, H1688; further termed 
OXPHOShigh) and lowest (H841, H372, H196; OXPHO-
Slow) protein expressions of NDUFA5, COX4I1, and 
COX5B (Supplementary Figure S3). Of note, all 
OXPHOShigh cell lines were ASCL1-driven, whereas 
OXPHOSlow cell lines were exclusively YAP1 positive.

Quantification of the mitochondrial DNA copy number 
using qPCR revealed a significantly higher (p = 0.0242, 
mean fold change: 1.75) mitochondrial content in the 
OXPHOShigh group. This was determined by the dif-
ference between the mitochondrial NADH dehydroge-
nase 1 (ND1) and the nuclear hemoglobin gene (HGB) 
(Fig.  3A). Flow cytometry analysis in the respective cell 
lines following staining with Mitotracker Red CMXROS 
confirmed a higher number of mitochondria in the 
OXPHOShigh group (p = 0.0021, mean fold change: 1.74). 
A JC-1 assay, which enables to assess mitochondrial 
membrane potential, revealed no significant difference 
(p = 0.477) in membrane potential between OXPHOShigh 
and OXPHOSlow cells, as shown by the ratio of JC-1 
aggregates and monomers (Fig.  3C, Supplementary Fig-
ure S4A). Of note, when we treated the cells with an 
uncoupler of mitochondrial oxidative phosphorylation 
(FCCP), as expected, we found a reduction of JC1 aggre-
gates (Supplementary Figure S4B). Confocal imaging of 
a representative OXPHOShigh (DMS53) and OXPHOSlow 
(H372) cell line stained with Mitotracker Red CMXROS 
also demonstrated a greater abundance of mitochondria 
in DMS53 (Fig. 3C, Supplementary Figure S5).

OXPHOShigh and OXPHOSlow cells differ in mitochondrial 
size and shape
Interestingly, we observed remarkable differences in 
mitochondrial shape and size between OXPHOShigh and 
OXPHOSlow cell lines. While the OXPHOShigh cell line 
DMS53 showed elongated mitochondria, H372 displayed 
round mitochondrial enlargement, indicating alterations 

in mitochondrial function [35] (Fig.  3D, Supplementary 
Figure S5). We used a deep learning neuronal network 
for automated image analysis of N > 105 individual mito-
chondria to quantify the observed differences in size and 
shape. Accordingly, while H372 showed a significantly 
greater median mitochondrial area and sphericity, the 
mitochondria of DMS53 were characterized by signifi-
cantly higher median aspect ratio (AR = proportional 
relation between width and height), proportion of mito-
chondria with AR > 2, and median elongation factor (EF) 
per image (N = 8 per cell line) analyzed (Fig.  3E and F, 
Supplementary Figure S6). In-depth structural analysis 
using TEM validated higher mitochondrial content in 
DMS53 compared to H372 based on significantly higher 
mitochondrial numbers (Fig.  3G and H). Moreover, the 
mean area of mitochondria as well as the circularity were 
significantly lower in DMS53, whereas the mean AR was 
lower in H372 (Supplementary Figure S7), which is in 
concordance with our above results (Fig. 3E and F).

OXPHOShigh cells are smaller and exhibit less intracellular 
lipid storage
Notably, TEM revealed significantly larger lipid droplets 
in the OXPHOSlow cell line H372, indicating increased 
storage of intracellular lipids (Figs.  3H  and 4A, Supple-
mentary Figures S7D and E). Quantitative evaluation of 
oil red stainings in H372 and DMS53 cells confirmed a 
significant lipid accumulation in OXPHOSlow cells and 
depleted lipid levels in OXPHOShigh cells (Fig. 4B and C). 
Since fatty acids represent an important energy source for 
ATP generation via oxidative phosphorylation, we further 
investigated intracellular lipid droplets in our panel of 
six cell lines. Flow cytometry following Bodipy 495/503 
lipid staining revealed a significantly higher overall con-
tent of lipid droplets in OXPHOSlow cells (p = 0.018, mean 
fold change: 2.14; Fig.  4D). Furthermore, we found a 
high cellular size variation in the OXPHOSlow cell lines 
(vs. OXPHOShigh cells with minimal size variation and a 
statistically not significant smaller size; p = 0.10; Supple-
mentary Figure S8A). When we compared cell size to 

(See figure on previous page.)
Fig. 3  OXPHOShigh cells have altered mitochondrial composition. (A) Mitochondrial content was determined via mitochondrial ND1. Nuclear HGB ex-
pression was used as reference gene. The results indicate significantly more mitochondria in OXPHOShigh cell lines (DMS53, H1688 and SHP77) compared 
to OXPHOSlow (H196, H372, H841). RNA levels were measured by qPCR and results are shown as 2−Δct. Statistical significance was determined using the 
Mann-Whitney test (p = 0.0242). (B) Fluorescent staining of mitochondria was measured using the mean fluorescence intensity (MFI) of Mitotracker 
Red CXMROS via flow cytometry and normalized to unstained controls (Mann-Whitney test; p = 0.0075). (C) Ratio of JC-1 aggregates and monomers in 
OXPHOShigh (blue) and OXPHOSlow (orange) cell lines. Each dot represents the mean of one cell line. T-Test, ns: not significant (p = 0.477). (D) Representa-
tive images of mitochondria stained with Mitotracker Red CMXROS of a cell line with low (left, H372) and high (right, DMS53) oxidative characteristics. 
Scale bar: 5 µM. (E) Median area and (F) median aspect ratio (AR) of mitochondria in the OXPHOSlow H372 and the OXPHOShigh DMS53 cell lines were 
determined using automated image analysis of n > 105 individual mitochondria (Mann-Whitney test). Mitochondrial size and shape were evaluated 
from confocal images using neuronal AI network and showed smaller mitochondrial areas and increased AR of DMS53 indicating an elongated shape 
compared to H372. (G) Significantly higher mean number of mitochondria was determined in DMS53 (OXPHOShigh) compared to H372 (OXPHOSlow) 
based on transmission electron microscopy images (n = 5, respectively). Mann-Whitney tests * p ≤ 0.05, ** p < 0.01, *** p < 0.001. Data are represented as 
mean ± SEM. (H) Images of transmission electron microscopy of mitochondria from the OXPHOSlow cell line H372 (left panel) and the OXPHOShigh cell line 
DMS53 (right panel). Upper images illustrate mitochondria in green and lipid droplets in yellow. Middle images show overviews of representative images 
and bottom images depict higher magnification excerpts. Scale bar: 1 μm
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lipid storage, we found a highly significant correlation 
(p = 0.0014, r = 0.9691, Fig.  4E), resulting in no differ-
ence when intracellular lipid content was normalized to 
cell size (p = 0.485, Supplementary Figure S8B). Impor-
tantly, the mitochondria content in relation to cell size 
remained significantly different between OXPHOShigh 
and OXPHOSlow cells (p = 0.0039), further strengthening 
our findings that OXPHOShigh cells have a higher number 
and also density of mitochondria (Fig. 4F, Supplementary 
Figure S8C).

OXPHOS activity dictates the reliance on lipid or glutamine 
metabolism
Next, we screened for therapeutic vulnerabilities using 
various metabolic inhibitors (Fig.  5A). First, to vali-
date the dependency on oxidative phosphorylation, we 
treated cells with the widely used mitochondrial respira-
tory complex I inhibitor metformin and the small mol-
ecule inhibitor IACS-010795, as well as with the ATP 
synthase (Complex V) inhibitor oligomycin (Fig.  5A). 
Pooled results of cell viability assays indicated greater 
effects in the three OXPHOShigh (compared to the 

Fig. 4  OXPHOShigh cell lines are smaller and exhibit less intracellular lipid storage. (A) Evaluation of electron microscopy showing a significantly increased 
area (µm2) of lipid droplets in OXPHOSlow (H372) and OXPHOShigh (DMS53) cell lines. (B) Lipid droplets were stained with oil red, manually counted and 
compared between H372 (orange bar) and DMS53 (blue bar) cells confirming the observed differenced in lipid storage. (C) Oil red staining of lipid drop-
lets of two representative cell lines. Scale bar: 20 μm. (D) Lipid compartments in the OXPHOShigh (DMS53, H1688 and SHP77) and the OXPHOSlow cell lines 
(H196, H372, H841) were stained with Bodipy 493/503 and the mean fluorescence intensity (MFI) was measured via flow cytometry. Mann-Whitney tests * 
p ≤ 0.05, ** p < 0.01, *** p < 0.001. Data are represented as mean ± SEM. (E) Pearson correlation between cell size (x-axis) and cellular lipid content (y-axis) in 
OXPHOShigh (blue) and OXPHOSlow (orange) cell lines. Each dot represents the mean of one cell line. (F) Mitochondrial content measured by Mitotracker 
Red CXMROS (see Fig. 2B) normalized to cell size. Each dot represents the mean of one OXPHOShigh (blue) or OXPHOSlow (orange) cell line. T-Test. ** p < 0.01
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Fig. 5 (See legend on next page.)
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three OXPHOSlow cell lines) with all inhibitors (Fig. 5B, 
Supplementary Figure S9). In support of this, in colony 
formation assays we observed much more pronounced 
effects using smaller doses of each inhibitor in the rep-
resentative OXPHOShigh cell line SHP77 compared to the 
OXPHOSlow cell line H196 (Supplementary Figure S10).

To elucidate the reliance on preceding metabolic path-
ways fueling the tricarboxylic acid cycle (TCA) including 
glycolysis, β-oxidation, and glutaminolysis, cells were also 
treated with the mitochondrial pyruvate carrier (MPC) 
inhibitor UK-5099, the competitive glycolysis inhibitor 
2-deoxy-D-glucose (2-DG), the carnitine palmitoyltrans-
ferase 1 (CPT1) inhibitor perhexiline, and the glutamin-
ase (GLS) inhibitor BPTES, targeting different metabolic 
routes (Fig. 5A). While all cell lines were equally resistant 
to glycolysis inhibition, OXPHOShigh cells showed hyper-
sensitivity to perhexiline (β-oxidation inhibition) while 
cell lines with a OXPHOSlow profile were more vulner-
able to glutaminolysis inhibition using BPTES (Fig.  5  C 
and D, Supplementary Figure S11), suggesting that 
OXPHOShigh cells rather depend on lipids to maintain 
their high oxidative state. This is in line with the observed 
lower amount of lipids in OXPHOShigh cell lines (Fig. 4). 
To exclude sensitivity patterns based on differential lev-
els of targets, respective protein expression patterns of 
the different SCLC subtypes were evaluated in all 26 cell 
lines using our proteomic data. Except for MPC2 expres-
sion, which was higher in ASCL-1 expressing compared 
to NEUROD1 and YAP1-dominant cells, protein intensi-
ties were similarly distributed between SCLC-A and the 
other molecular subtypes (Supplementary Figure S12).

Next, we tested the reliance on glutamine, glucose, or 
fetal bovine serum by incubating the cells with modified 
media under normoxic and hypoxic conditions over 72 h. 
Confirming our previous results, cell growth was only 
significantly inhibited in the OXPHOSlow cells when glu-
tamine was absent. Intriguingly, this phenomenon was 
detected under both normoxic and hypoxic conditions 
(Fig.  5E, Supplementary Figures S13A and B). Regard-
ing glucose and serum starvation, cell viability was gen-
erally low with no difference between OXPHOShigh and 
OXPHOSlow cells, regardless of the presence of oxygen 
(Fig.  5E, Supplementary Figures S13A and B). Of note, 
hypoxia over 72 h generally triggered proliferation in all 
cell lines tested (Fig. 5F, Supplementary Figure S13C).

OXPHOShigh cells are more aerobic and depend on fatty 
acid synthesis
Next, we aimed to further confirm our results in Sea-
horse assays. Indeed, the OXPHOShigh DMS53 and the 
OXPHOSlow H372 cell lines showed significant vari-
ances in oxygen consumption rate (OCR) and extracel-
lular consumption rate (ECAR) (Supplementary Figures 
S14A-C). Looking at the baseline levels of OCR and 
ECAR of the Seahorse Mito Stress Test, representative 
OXPHOShigh cells displayed different metabolic states. 
Hence, DMS53 cells were characterized as aerobic cells, 
whereas H372 cells were particularly associated with gly-
colytic functions (Supplementary Figure S14D). Overall, 
OXPHOShigh cells depicted significantly higher ATP pro-
duction (Supplementary Figure S14E). Assessment of the 
metabolic dependency and capacity based on the Sea-
horse Mito Fuel Flex Test further confirmed these results 
(Supplementary Figures S14F and G). Dependency, 
in this respect, defines the reliance of SCLC cells on 
appointed metabolites by the cell´s inability to compen-
sate for absent fuels. Both representative cell lines were 
most dependent on glucose consumption. However, sig-
nificantly higher dependency of glutamine was observed 
in the OXPHOSlow H372 cell line whereas dependency on 
fatty acids for ATP production was significantly higher in 
OXPHOShigh DMS53 cells (Supplementary Figure S14F). 
Metabolic capacity indicates the ability of maintaining 
baseline respiration of a certain fuel pathway when the 
other two metabolites are diminished. Glucose and fatty 
acid capacities were significantly more pronounced with 
slightly more than 70% and 30% in the ASCL1-dominant 
DMS53 cells, respectively (Supplementary Figure S14G). 
Of note, glutamine capacity was comparable.

OXPHOSlow cells display increased glutamate 
dehydrogenase activity and glutathione levels
In order to determine the activity of important meta-
bolic enzymes such as lactate dehydrogenase (LDH), 
succinate dehydrogenase (SDH), isocitrate dehydro-
genase (IDH), glutamate dehydrogenase (GDH), and 
3-hydroxyacyl coenzyme A dehydrogenase (HAD), we 
performed enzyme activity assays as described previ-
ously [23]. We observed significantly higher enzymatic 
activity (p < 0.0001, mean fold change: 1.13) of GDH 
in the OXPHOSlow H372 compared to DMS53 cells 
(Fig.  6A and B), further supporting their dependency 

(See figure on previous page.)
Fig. 5  Screening of metabolic inhibitors reveals differential responses between cell lines with OXPHOShigh and OXPHOSlow signatures. (A) Illustration of all 
tested inhibitors and their corresponding targets. Enzymes investigated via activity assays are shown in red (GDH– glutamate dehydrogenase, IDH - isoci-
trate dehydrogenase, SDH-succinate dehydrogenase, LDH– lactate dehydrogenase and HAD − 3 hydroxyacyl coenzyme A dehydrogenase). Cell viability 
of three OXPHOShigh (blue) and OXPHOSlow (orange) cell lines after 72 h using increasing doses of (B) metformin, (C) perhexiline and (D) BPTES. Statisti-
cal significance was determined using 2-way ANOVA and Sidak´s multiple comparisons test. (E) Growth assays using modified media without glucose, 
glutamine or FBS were performed under normoxic (left) and hypoxic (right) conditions over 72 h in OXPHOShigh (blue) or OXPHOSlow (orange) cell panels 
(N per subgroup = 3, respectively). (F) Comparison of cell growth behavior between hypoxic and normoxic conditions OXPHOShigh (blue) or OXPHOSlow 
(orange) cell panels. Mann-Whitney tests. * p ≤ 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data are represented as mean ± SEM
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on glutaminolysis. Frequency distribution analysis cat-
egorizing the cells in subpopulations with negative or 
positive stainings (cutoff defined by respective negative 
controls) revealed 84% GDH positivity in H372 com-
pared to 40% in DMS53 (Fig.  6C). GDH activity inside 
the nuclei was equally distributed between both cell 
lines (Supplementary Figure S15). Likewise, IDH activ-
ity displayed a similar activity pattern and frequency 
distribution in these representative SCLC cells being 
more active in OXPHOSlow cells. Taking a closer look at 
ASCL1-driven DMS53 cells, the activity levels of HAD, 
SDH and LDH were higher as compared to H372 cells 
(Supplementary Figures S15-19). Further analysis of the 

nuclei revealed augmented enzyme activities of HAD and 
SDH, but especially LDH in the SCLC-A cells, whereas 
IDH did not show differential nuclear distributions (Sup-
plementary Figures S15-19). Of note, we found slightly 
higher glutathione (GSH) levels in the OXPHOSlow cell 
lines (p = 0.036, mean fold change: 1.35), while glutathi-
one disulfide (GSSG) levels, although trending in the 
same direction, were not significantly (p = 0.0644) differ-
ent (Fig. 6D).

Finally, we set out to validate our findings in patient-
derived samples, using human SCLC tissue specimens 
and publicly available datasets. First, we conducted 
enzyme activity assays in human primary tumor tissues 

Fig. 6  OXPHOSlow cells exhibit increased GDH enzyme activity. (A) GDH activity in the OXPHOSlow cell line H372 (orange) compared to the OXPHOShigh 
cell line DMS53 (blue) on single-cell level with and without the inhibitor ATP (left) and max. enzyme activity per image (n = 20, respectively; right). Statisti-
cal significance was determined using the Mann-Whitney test. **** p ≤ 0.0001. (B) Corresponding representative images depicting nuclei (blue) and GDH 
activity (yellow) in H372 (right) and DMS53 (left) cells. Scale bar: 50 μm. (C) Frequency distribution (cut-off defined by respective negative inhibitor stain-
ing, 97.3%) in DMS53 (blue) and H372 (orange) cells. (D) Total glutathione (GSH) and glutathione disulfide (GSSG) levels in OXPHOShigh cell lines (DMS53, 
H1688 and SHP77) compared to OXPHOSlow (H196, H372, H841). Statistical significance was determined using the Mann-Whitney test. * p ≤ 0.05. Data is 
shown as mean ± SEM
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obtained from rapid research autopsies of five SCLC 
patients. Pathological evaluation of immunohistochemi-
cal stainings for ASCL1 revealed that two specimens 
were from the SCLC-A subtype (P6 and P7), while the 
remaining three (P2, P3 and P5) were largely negative 
for ASCL1 and thus represented non-SCLC-A tumors 
(Supplementary Figure S20). While SDH, LDH, and HAD 
showed no significantly different activity, GDH and IDH 
levels were significantly higher in non-SCLC-A tumors, 
which is in line with our in vitro findings (Fig. 2A and B, 
Supplementary Figure S21).

Furthermore, to validate the importance of oxida-
tive phosphorylation in SCLC-A patient-derived data, 
we analyzed a several publicly available proteomic and 
transcriptomic datasets. Specifically, pre-ranked GSEA 
was performed using the KEGG and GOBP genesets for 
oxidative phosphorylation on proteomic data from Liu 
et al. [32] and transcriptomic data from Liu et al. [32] 
and George et al. [7]. In addition, we analyzed two cell 
line datasets, proteomics from Goncalves et al. [36] and 
transcriptomics from the CCLE. Our data show a signifi-
cant (p < 0.05, indicated by the dotted lines) enrichment 
of OXPHOS in SCLC-A in all datasets except for the cell 
line data from CCLE and the GOBP data from George et 
al. (Figs. 2 C and D, Supplementary Figure S22). Gener-
ally, we found higher normalized enrichment scores in 
the proteomic data compared to transcriptomic data, 
indicating a more accurate representation of cellular 
metabolism at the protein level (Fig. 2 C and D).

Discussion
Although novel therapeutic approaches including 
immune checkpoint inhibition have extended the thera-
peutic options for SCLC, the clinical outcome of SCLC 
patients remains poor. Major contributors to negative 
clinical trial endpoints in SCLC may be high tumor plas-
ticity as well as inadequate patient stratification based on 
underlying molecular backgrounds [8]. Hence, the inves-
tigation of SCLC subtypes and corresponding molecular 
profiles is fundamental for the development of diagnos-
tic biomarkers and personalized therapies. Accordingly, 
we previously published an in-depth proteomic analysis 
of 26 human SCLC cell lines focusing on four subtypes 
based on the dominant expression of ASCL1, NEU-
ROD1, POU2F3, and YAP1 [18]. In that study, we found 
that increased expression of the transcriptional regula-
tor ASCL1 was associated with a metabolic shift towards 
oxidative phosphorylation [18].

ASCL1 is a transcription factor known for its critical 
role in regulating neuronal development. In the context 
of SCLC, ASCL1 has been described to mediate Wnt 
signaling, thereby influencing NE differentiation, tumor 
cell proliferation and promoting epithelial-like char-
acteristics through E-cadherin expression [37]. Thus, 

SCLC is metabolically heterogeneous and driven by dif-
ferent levels of the lineage oncogene ASCL1 as evidenced 
by metabolomic results [38]. By analyzing the topmost 
enriched KEGG pathways and biological processes based 
on proteins differentially expressed in SCLC-A vs. non-
SCLC-A, we identified increased NE differentiation 
and oxidative phosphorylation, but also altered insulin 
metabolism, signifying the NE origin and metabolic dis-
tinctiveness of ASCL1-driven SCLCs. Recently, oxida-
tive metabolism has been described in various types of 
malignant tumors including melanoma or pancreatic 
carcinoma, among others [39, 40]. A distinct cluster of 
diffuse large B-cell lymphomas were related to increased 
oxidative phosphorylation in 2005, suggesting a differen-
tial metabolism in lymphoma cells [41]. Therefore, high 
oxidative phosphorylation activity may display a key reg-
ulatory mechanism of tumor metabolic reprogramming, 
especially in ASCL1-driven SCLC.

Next, we evaluated SCLC-A subtype-specific features 
using GSEA and found that several mitochondria-related 
processes were significantly enriched including NADH 
dehydrogenase complex assembly. Aberrations in com-
plex I of the electron transport chain has been thor-
oughly investigated in health and disease, and represents 
the most frequent defect in aerobic respiration in human 
disorders [42]. In our current study, we demonstrate sig-
nificantly upregulated expression levels of mitochondrial 
ND1. ND1 is located in the NADH dehydrogenase com-
plex [42], hence, supporting our hypothesis of higher 
mitochondrial content and activity in SCLC-A cell lines. 
Moreover, overexpression of complex I has been found to 
be associated with higher metastatic potential in human 
breast cancer [43]. Intriguingly, we recently reported that 
high ASCL1 expression is associated with worse overall 
survival compared to other SCLC molecular subtypes 
in surgically-treated patients [9, 13]. Thus, high activity 
of complex I of the electron transport chain indicates a 
higher propensity of aggressiveness in cancer.

Mitochondrial fusion and fission are highly dynamic 
processes that play pivotal roles in preserving func-
tional mitochondria [44]. In this study, both biological 
processes were dysregulated between SCLC-A and non-
SCLC-A cell lines according to GSEA. Recently, SCLC 
has been associated with upregulation of commonly 
known transcription factors including ASCL1, ID2/4, 
or FOXA2, all potentially mediating mitochondrial pro-
cesses such as mitochondrial organization and elongation 
[45]. In accordance with this finding, Gil and colleagues 
have recently reported pathological overrepresentation of 
oxidative phosphorylation and enrichment of processes 
required for mitochondrial translation in melanoma 
samples [46]. The balance between fusion and fission 
can be mediated by metabolic and pathogenic cellular 
environments, thereby influencing the maintenance of 
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functional mitochondria, redistribution, and cell growth 
[47]. Recent in vitro data suggest that induction of mito-
chondrial fission promotes oxidative phosphorylation, 
whereas the inhibition of mitochondrial fission results 
in diminished oxidative phosphorylation in hepatic stel-
late cells [48]. However, similar to our observation in 
non-ASCL1 SCLC cells, mitochondrial dysfunction has 
been found to be associated with elevated expression of 
epithelial-to-mesenchymal transition (EMT) genes [49]. 
Indeed, by analyzing proteomic and/or transcriptomic 
data, we previously demonstrated strong associations of 
EMT-scores with POU2F3 expression in SCLC cells and, 
furthermore, showed that YAP1-dominant SCLC cells 
are related to EMT pathways (KEGG) [18].

Oxidative phosphorylation in mitochondria utilizes 
electrons from NADH and FADH2, which can be gener-
ated from the metabolism of long-chain fatty acids, glu-
cose, and amino acids, to produce ATP. CPT-1 is located 
in the outer mitochondrial membrane, mediates the 
transport of long-chain fatty acids from the cytoplasm 
into the mitochondria that can further be metabolized 
via fatty acid β-oxidation [50]. Indeed, growing evidence 
suggests that β-oxidation and CPTs are fundamental 
for cell proliferation and viability, and also for promot-
ing drug resistance in cancer [51]. Notably, our SCLC-A 
cohort was more sensitive to CPT1 inhibition by per-
hexiline, suggesting fatty-acids as oxidizable substrates 
metabolized by SCLC-A cells. Given the highly aggres-
sive behavior of SCLC-A compared to the other SCLC 
subtypes [9], targeting the CPT system and lipid homeo-
stasis may become an emerging target for SCLC-A.

Metformin has been used for the first-line treatment of 
type II diabetes mellitus (T2DM) by decreasing hepatic 
gluconeogenesis [52]. Recent evidence supports the cyto-
toxic activity of metformin via mTOR-pathway activation 
and inhibition of the complex 1 of the respiratory chain 
in mitochondria [53]. Nevertheless, the antineoplastic 
effects and efficacy of metformin in addition to chemo-
therapy in SCLC remains unclear. A recent meta-analysis 
evaluated six independent studies including more than 
500 SCLC patients with T2DM who received concurrent 
metformin therapy [54]. These authors observed signifi-
cantly longer overall and disease-free survivals in SCLC 
patients receiving metformin. Based on this informa-
tion in addition to our findings, we hypothesize that the 
combination of metformin and cytotoxic therapy may 
increase the therapeutic efficacy primarily in ASCL1-
expressing SCLCs.

We found significantly higher GDH activity in our non-
SCLC-A cell lines and, accordingly, GDH expressions in 
non-SCLC-A human tumor samples obtained from rapid 
autopsies. Glutamine is one of the most abundant amino 
acids in the human body and its conversion to glutamate 
via glutaminase is essential for fueling the TCA cycle 

[55]. Glutamate serves a dual role in cellular processes. 
Firstly, it acts as a primary supplier of α-ketoglutarate 
(α-KG), playing a crucial role in both energy production 
and biosynthesis. Secondly, glutamate serves as a pre-
cursor for the essential cellular antioxidant glutathione, 
contributing to the maintenance of intracellular redox 
homeostasis [56]. In line with this, we found increased 
glutathione levels in the non-SCLC-A cell lines. Besides 
the glycolytic shift that proliferating cancer cells com-
monly acquire, they additionally display a dependence on 
other metabolites including glutamine [55]. Of note, glu-
tamine metabolism has been described to be mediated 
in a MYC-dependent manner in different malignancies 
including SCLC [57]. MYC-high SCLC, associated with 
ASCL1-low SCLC subtypes, has additionally been shown 
to be more glycolytic with less oxidative capacity, hence, 
in accordance with our findings [58, 59]. Only recently, 
targeting the host glutamine metabolism has been dem-
onstrated to result in increased chemosensitivity in SCLC 
mouse xenograft models [60]. The higher GDH activity in 
non-SCLC-A primary material again highlights different 
underlying metabolic dynamics that might aid in devel-
oping personalized therapeutic approaches in SCLC.

The better understanding of metabolic rewiring in 
SCLC offers new insights to this hard-to-treat disease. 
Our findings indicate that human ASCL1-dominant 
SCLCs primarily depend on high mitochondrial content 
and metabolic processes including oxidative phosphory-
lation to ensure their energy requirements. Based on this 
study, we propose two subtype-specific metabolic vul-
nerabilities in SCLC. Firstly, ASCL1-dominant SCLCs 
are more susceptible to complex I inhibition along with 
CPT1 inhibition. Secondly, non-ASCL1 dependent 
SCLCs are more vulnerable to glutamine depletion and 
inhibition of glutaminolysis. Our observations of vary-
ing GDH activities were also confirmed in human SCLC 
tissues, indicating similar enzymatic activities during 
disease progression. The importance of oxidative phos-
phorylation was also validated in patient-derived, pub-
licly available datasets. Nevertheless, further studies 
are warranted to validate the susceptibility of SCLC-A 
tumors to OXPHOS inhibition and the superior response 
of non-SCLC-A tumors to glutaminolysis inhibition.
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EMT	� Epithelial-to-mesenchymal transition
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GDH	� Glutamate dehydrogenase
GLS	� Glutaminase
GSEA	� Gene set enrichment analysis
GSH	� Glutathione
GSSG	� Glutathione disulfide
HAD	� 3 hydroxyacyl coenzyme A dehydrogenase
HGB	� Hemoglobin
ICI	� Immune checkpoint inhibitor
IDH	� Isocitrate dehydrogenase
IHC	� Immunohistochemistry
LDH	� Lactate dehydrogenase
MPC	� Mitochondrial pyruvate carrier
NADH	� Nicotinamide adenine dinucleotide
ND1	� NADH dehydrogenase 1
NDUFA5	� NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 5
NE	� Neuroendocrine
NES	� Normalized enrichment score
NEUROD1	� Neurogenic differentiation factor 1
OCR	� Oxygen consumption rate
OXPHOS	� Oxidative phosphorylation
PBS	� Phosphate-buffered saline
POU2F3	� POU class 2 homeobox 3
SCLC	� Small cell lung cancer
SCLC-AN	� ASCL1/ NEUROD1 expressing SCLC
SDH	� Succinate dehydrogenase
TCA	� Tricarboxylic acid cycle
TRX	� Thioredoxin
T2DM	� Type II diabetes mellitus
YAP1	� Yes-associated protein 1
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