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Abstract
Background  Leptomeningeal metastasis (LM) is a devastating complication of cancer that is difficult to treat. 
Thus, early diagnosis is essential for LM patients. However, cerebrospinal fluid (CSF) cytology has low sensitivity, and 
imaging approaches are ineffective. We explored targeted CSF metabolic profiling to discriminate among LM and 
other conditions affecting the central nervous system (CNS).

Methods  We quantitatively measured amino acids, biogenic amines, hexoses, acylcarnitines (AC), cholesteryl esters 
(CE), glycerides, phosphatidylcholines (PC), lysophosphatidylcholines (LPC), sphingomyelins (SM), and ceramides (Cer) 
in 117 CSF samples from various groups of healthy controls (HC, n = 10), patients with LM (LM, n = 47), parenchymal 
brain tumor (PBT, n = 45), and inflammatory disease (ID, n = 13) with internal standards using the Absolute IDQ- p400® 
targeted mass spectrometry kit. Metabolites detected in > 90% of samples or showing a difference in proportional 
level between groups ≥ 75% were used in logistic regression models when there was no single metabolite with 
AUC = 1 for the groups of comparison.

Results  PC and SM had higher levels in LM than in PBT or HC, whereas LPC had lower level in PBT than the other 
groups. Glycerides and Cer levels were higher in PBT and LM than in HC. Long-chain AC level in PBT was lower than in 
LM or HC. A regression model including Ala, PC (42:7), PC (30:3), PC (37:0), and Tyr achieved complete discrimination 
(AUC = 1.0) between LM and HC. In comparison of PBT and HC, twenty-six individual metabolites allowed complete 
discrimination between two groups, and between ID and HC fourty-six individual lipid metabolites allowed complete 
discrimination. Twenty-one individual metabolites (18 ACs and 3 PCs) allowed complete discrimination between LM 
and PBT.

Conclusions  Using a commercial targeted liquid chromatography-mass spectrometry (LC-MS) metabolomics kit, 
we were able to differentiate LM from HC and PBT. Most of the discriminative metabolites among different diseases 
were lipid metabolites, for which their CNS distribution and quantification in different cell types are largely unknown, 

Exploratory profiling of metabolites 
in cerebrospinal fluid using a commercially 
available targeted LC-MS based metabolomics 
kit to discriminate leptomeningeal metastasis
Soojin Jang1, Ho-Shin Gwak2,5* , Kyue-Yim Lee2, Jun Hwa Lee3, Kyung-Hee Kim3, Jong Heon Kim4, Jong Bae Park4, 
Sang Hoon Shin5, Heon Yoo5, Yun-Sik Dho5, Kyu-Chang Wang5 and Byong Chul Yoo6

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0001-7175-4553
http://crossmark.crossref.org/dialog/?doi=10.1186/s40170-024-00367-x&domain=pdf&date_stamp=2025-1-18


Page 2 of 14Jang et al. Cancer & Metabolism            (2025) 13:2 

Introduction
Cerebrospinal fluid (CSF) bathes the central nervous sys-
tem (CNS), transporting neurotransmitters and other 
bioactive substances such as hormones and active/pas-
sive secretory compounds produced by brain cells [1]. 
Researchers analyze CSF to detect biomarkers of diseases 
including Alzheimer’s dementia, Parkinson’s disease, 
demyelinating diseases, and tumors [2, 3]. Candidate bio-
markers of CSF have been diverse but are often specific 
for a certain disease including proteins such as amyloid β 
and tau in Alzheimer’s dementia, tumor-specific antigens 
for germ cell tumors, and microRNAs, cell-free DNA, or 
other molecules such as cytokines for CNS tumors [2–6]. 
Among these, the metabolic profile provides a quantifi-
able readout of biochemical states ranging from normal 
physiology to diverse pathophysiologies, which may not 
be apparent in gene expression analyses [7].

Metabolites can be detected as low-mass ions (LMIs) in 
non-targeted mass spectrometry (MS) or as the unique 
resonance of proton in nuclear magnetic resonance 
spectroscopy in a semi-quantitative manner for metabo-
lomics analysis. The resulting metabolomic profiles of 
various biofluids from cancer patients reflect the unique 
characteristics of the tumor microenvironment, provid-
ing a method for early diagnosis and identification of 
distinctive signatures for various cancer types [8–13]. 
However, non-targeted MS should be re-evaluated with 
appropriate standard materials by a quantitative method 
(i.e. targeted liquid chromatography-mass spectrometry 
(LC-MS)), and all associated metabolites should be eval-
uated together for discriminative profiling according to 
metabolic changes. In this context, a commercially avail-
able targeted quantitative MS kit that measures hundreds 
of metabolites from hundreds of samples together would 
be helpful to overcome the limitations of non-targeted or 
semi-quantitative metabolomics and to gather data from 
many samples with minimal intra-/inter-laboratory bias.

Leptomeningeal metastasis (LM) is a terminal stage 
of cancer that rapidly deteriorates patient performance. 
Overall survival of patients with LM is approximately 
6–8 weeks after symptom presentation if not properly 
treated [14]. Even current treatment options of intra-CSF 
chemotherapy and radiation therapy result in marginal 
survival benefit without discernible symptom improve-
ment or definite cure [15]. Thus, early diagnosis of LM 
in high risk patients and an understanding of the relevant 
pathophysiology to develop targeted therapy are neces-
sary to improve outcomes of patients with LM; however, 

the current diagnostic tool of CSF cytology has low sen-
sitivity (50–60%) due to a paucity of floating cancer cells, 
and gadolinium-enhanced magnetic resonance imaging 
(MRI) is neither capable of early detection nor pathogno-
monic for LM because of varying non-specific leptomen-
ingeal enhancement [16–18].

Previously, we used liquid chromatography-tandem 
mass spectrometry (LC-MS/MS) to analyze metabolic 
profiles of CSF from a relatively large number of patients 
(n = 196) [19]. Using principal component analysis (PCA) 
based discriminant analysis, we identified 1,440 discrimi-
native LMIs that could differentiate LM from parenchy-
mal brain tumors (PBT), including brain metastasis (BM) 
and primary brain tumors (BT), which have a high risk 
of developing LM. Although we are still in the process of 
validating this LMI profile with targeted MS, it has been 
time-consuming to identify candidate LMIs in MS/MS 
results, and it has also been difficult to have appropriate 
internal standards for quantification.

In this study, we explored the metabolomic profiles of 
CSF from healthy controls (HC) and patients with LM 
or PBT using the commercially available Absolute IDQ-
p400® targeted metabolomics kit (Biocrates Life Science 
AG) for high-resolution mass spectrometry (HRMS). 
This kit enables quantification of 408 metabolites includ-
ing amino acids, biogenic amines, hexose, and polar/
non-polar lipids. We evaluated the levels of different 
metabolites and metabolite classes for differences due 
to cancer cell activity and characteristics of the tumor 
microenvironment. Furthermore, we identified spe-
cific metabolite profiles that were able to discriminate 
among LM, PBT, and inflammatory disease (ID). We also 
explored whether comparative profiling of CSF metabo-
lites could discriminate between different CNS tumor 
characteristics (e.g., glial vs. non-glial) and other clinical 
factors.

Materials and methods
CSF archives
CSF samples were obtained after Institutional Review 
Board approval (NCC2014-0135) from patients who had 
already submitted informed consent. CSF samples were 
mostly obtained via lumbar puncture for CSF cytology 
examination in cases of LM, BM, and BT, or for diagnos-
tic evaluation in ID cases. Additional CSF samples were 
collected from the cisternal/subarachnoid space during 
craniotomy for tumor removal: BM and BT; or clipping of 
an unruptured aneurysm: HC. All LM patients had both 

whereas amino acids, biogenic amines, and hexoses failed to show significant differences. Future validation studies 
with larger, controlled cohorts should be performed, and hopefully, the kit may expand its metabolite coverage for 
unique cancer cell glucose metabolism.
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a cytological diagnosis of LM and a positive neuroimag-
ing study (gadolinium-enhanced brain MRI/whole-spine 
MRI) [16]. CSF samples were centrifuged (2,000×g for 
20 min, within 1 h of collection) at room temperature to 
pellet cells, and the supernatant was aliquoted. A 50-µL 
sample of each supernatant for MS analysis was instantly 
kept in freezer (–80 °C) until metabolite extraction. The 
remaining samples were centrifuged again at 10,000×g for 
30 min and kept frozen at − 80 °C for further study.

Targeted CSF metabolome measurement
A targeted metabolomic analysis was performed using 
the Absolute IDQ-p400® kit (Biocrates Life Science 
AG, Innsbruck, Austria), a commercially available assay 
that was originally developed for plasma and covers 
408 metabolites from 11 metabolite classes. The largest 
metabolite class covered was phosphatidylcholines (PC, 
n = 196), followed by acylcarnitines (AC, n = 55), triglyc-
erides (TG, n = 42), sphingomyelins (SM, n = 31), lyso-
phosphatidylcholines (LPC, n = 24), amino acids (n = 21), 
biogenic amines (n = 21), diglycerides (DG, n = 18), cho-
lesteryl esters (CE, n = 14), ceramides (Cer, n = 9), and 
monosaccharides (n = 1), which included the total of hex-
oses. The LC-HRMS method was used to quantify amino 
acids and biogenic amines, while flow injection analysis 
(FIA) HRMS was used to assess AC, CE, glycerophos-
pholipids (e.g., PC and LPC), glycerides (e.g., DG and 
TG), sphingolipids (e.g., SM and Cer), and hexoses.

The kit provided quantitative measurements for amino 
acids, biogenic amines, and hexoses with internal stan-
dards provided by the manufacturer [20]. The rest of the 
metabolites were measured semi-quantitatively, using 
standards with similar chemical properties as the targets 
(a version of one-point calibration).

Metabolite extraction and preparation
Briefly, frozen CSF samples were placed on ice until 
completely thawed and then centrifuged at 2,750×g for 
5 min at 4  °C. According to recommendations from the 
kit manufacturer, 30 µL aliquots of internal standard mix, 
CSF sample, blank, zero sample, and kit quality control 
materials were each added directly onto a 96-well plate 
and dried under nitrogen flow. The dried samples were 
derivatized using 5% phenylisothiocyanate, incubated 
for 25 min, and dried under nitrogen flow. After drying, 
300 µL extraction solvent (5 mM ammonium acetate in 
methanol) was added and shaken for 30 min at 450 rpm. 
The contents of the wells were filtered into a lower plate 
by centrifugation at 500×g for 2 min. The extracted sam-
ples were diluted for subsequent LC-MS/MS and FIA-
MS/MS analysis.

LC-MS/MS and FIA-MS/MS analyses
The extracted samples were analyzed using a Q Exactive™ 
Plus Hybrid Quadrupole-Orbitrap mass spectrometer 
(Thermo Fisher Scientific) coupled with a Vanquish Flex 
UHPLC system (Thermo Fisher Scientific). For LC-MS/
MS analysis, samples were loaded onto a trap column 
(SecurityGuard™ ULTRA Cartridges UHPLC C18, 
2.1 mm) and gradient separated on an analytical column 
(Biocrates) with solvent B (0.2% formic acid in acetoni-
trile) concentration from 0 to 12% for 1.25 min, from 12 
to 17.5% for 1.2 min, from 17.5 to 50% for 1.3 min, and 
from 50 to 95% for 0.5 min. The eluted metabolites were 
sprayed onto a Heat Electrospray Ionization (HESI-II) 
source with electrospray voltage of 3.0 kV. The Q Exactive 
Orbitrap mass analyzer was operated in either full MS 
mode or parallel reaction monitoring (PRM) mode. Full 
MS scans were acquired over the range m/z 55–800 with 
mass resolution of 70,000 (at m/z 200). PRM scans were 
fragmented in the higher-energy collisional dissociation 
collision cell with normalized collision energy of 30, and 
tandem mass spectra were acquired in the Orbitrap mass 
analyzer with a mass resolution of 35,000 at m/z 200. 
For FIA-MS/MS analysis, samples were sprayed onto an 
HESI-II source with electrospray voltage of 2.5 kV. The Q 
Exactive Orbitrap mass analyzer was operated in full MS 
mode. Full MS scans were acquired over eight different 
m/z ranges according to the manufacturer’s instruction, 
with mass resolution of 70,000 (at m/z 200). The acquired 
spectra were analyzed using Xcalibur™ (Thermo Fisher 
Scientific) and MetIDQ™ (Biocrates) software.

CSF metabolite profiling according to patient groups
Candidate metabolites
As the goal of this study was to set a discriminative pro-
file based on standardized targeted MS, we used metabo-
lites that were measured in > 90% of all CSF samples as 
candidate metabolites for discrimination. However, if 
a metabolite that was measured in less than 90% of all 
CSF samples was present in proportions that differed by 
at least 75% between comparison groups (e.g., PC (44:7) 
was detected in 10 out of 49 LM samples (80%) but in 
none of the HC samples), we assumed that the metabo-
lite was uniquely present in one group and included it as 
a candidate metabolite, regardless of its overall detection 
rate across all CSF samples.

Select discriminative metabolites and compose a 
discriminative model
To identify the candidate metabolites with the great-
est power to discriminate among the patient groups, 
we selected ‘discriminative metabolites’ that showed 
an AUC ≥ 0.75 for a given comparison between patient 
groups. To make a discriminative model, we used logistic 
regression when there was no metabolite with AUC = 1 
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for a given comparison. The model was started using the 
two individual metabolites with the top two AUCs for the 
comparison of interest and then iteratively updated by 
adding the metabolite with the next highest AUC, until 
the model achieved an AUC = 1 or there were no more 
individual metabolites with an AUC ≥ 0.75.

Statistical analyses
R for Windows (v4.3.2) was used for all statistical analy-
ses. The PCA was done using the FactoMineR (Sebastien 
Le, Julie Josse, Francois Husson (2008). FactoMineR: An 
R Package for Multivariate Analysis. Journal of Statisti-
cal Software, 25(1), 1–18. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​8​6​3​7​/​j​s​s​.​v​
0​2​5​.​i​0​1​​​​​) and factoextra (Kassambara A, Mundt F (2020). 
_factoextra: Extract and Visualize the Results of Multi-
variate Data Analyses. R package version 1.0.7, ​<​​​h​t​​t​p​s​​:​/​
/​C​​R​A​​N​.​R​-​p​r​o​j​e​c​t​.​o​r​g​/​p​a​c​k​a​g​e​=​f​a​c​t​o​e​x​t​r​a​>​​​​​.​) packages. 
The heatmap was drawn using the pheatmap (Kolde R 
(2019). _pheatmap: Pretty Heatmaps_. R package version 
1.0.12, ​<​​​h​t​​t​p​s​​:​/​/​C​​R​A​​N​.​R​-​p​r​o​j​e​c​t​.​o​r​g​/​p​a​c​k​a​g​e​=​p​h​e​a​t​m​a​p​
>​​​​​.​) package.

Quantitative values of metabolite concentrations in 
two groups were compared using t-test or rank sum test, 
depending on the results of a Shapiro–Wilk test for nor-
mality. A two-tailed p value < 0.05 was considered statis-
tically significant after false discovery rate correction for 
multiple comparisons.

Results
Clinical characteristics of the patients
A total of 117 CSF samples were obtained from 49 
patients with LM and 68 control patients, including 
HC with no parenchymal brain disease but unruptured 
aneurysm. The demographic characteristics of the par-
ticipants are summarized in Supplementary Table 1. The 
primary cancer in all patients with LM was either non-
small-cell lung carcinoma or breast cancer, and those two 
primary cancers each accounted for six of the 15 cases 
of BM. In this context, females were more common than 
males in our sample due to the prevalence of breast can-
cer cases. As we did not restrict patient age in our sample, 
the patients’ ages ranged from 1 year to 81 years (median, 
48 years). Patients with BT were intentionally selected to 
include 10 individuals from each of three groups: those 
with extra-axial benign tumors, glial tumors, and non-
glial malignant brain tumors. Patients with ID included 
five with bacterial CSF infection and eight with demye-
linating disease, of whom five had multiple sclerosis and 
three had transverse myelitis.

The CSF sampling sites included the lumbar region 
with 53 samples, the ventricular region with 50 samples, 
and the cisternal region with 14 samples, selected accord-
ing to the sampling conditions described in the Methods 
section (Supplementary Table 2).

Proportions of detected metabolites among the CSF 
samples
The levels of each measured metabolite in CSF samples 
are listed in Supplementary Table 2. Overall, 201 metab-
olites (50%) were detected in > 90% of the samples, with 
136 metabolites (34%) detected in every sample. In con-
trast, 102 metabolites (26%) were found in ≤ 50% of the 
samples, and 35 metabolites (8.7%) were present in ≤ 10% 
of the samples (Fig. 1A). The levels of different metabolite 
classes were detected in varying proportions across the 
total samples, except for hexoses, which were detected in 
all samples (Fig. 1B). Of the 21 amino acids measured, 19 
were detected in all the samples, while Asp and Ile were 
each undetected in 9 samples (7.7%). Among the eight 
metabolite classes, biogenic amines were detected in the 
smallest proportion of samples. Specifically, 10 out of 21 
biogenic amines, including dopamine, histamine, and 
serotonin, appeared in < 10% of the samples. In contrast, 
creatinine, SDMA, t4-OH-Pro, and taurine were each 
detected in all samples. Spermidine was absent in all HC 
samples but detected in 17 of 49 LM samples, 15 of 45 
PBT samples, and 6 of 13 ID samples.

Determining the proportional levels of different lip-
ids was complicated because of the various lengths and 
double bonds of fatty acid chains within the same lipid 
subclasses (hereafter referred to as variants). Among the 
different subclasses of lipids, Cer were detected in the 
highest proportion of samples, with all variants pres-
ent in > 90% of the samples, and 5/9 variants detected in 
every sample. By contrast, SM were detected in a rela-
tively low proportion of samples, with only 2/31 (6.5%) 
variants detected in > 90% of the samples, and 20/31 
(65%) variants detected in < 50% of the samples. Follow-
ing Cer, AC were the next most common subclass of lipid 
metabolites among the samples, with 43/55 (78%) AC 
variants detected in > 90% of the samples and 41 variants 
(75%) detected in all the samples. Within the CE, DG, 
and TG subclasses of neutral lipids, 5/14 (36%), 11/18 
(61%), and 21/42 (50%) variants were detected in > 90% of 
the samples, respectively. Of total 170 lipid subclass vari-
ants detected in the analysis, PC had the greatest num-
ber of tested variants among the metabolite subclasses. 
Eighty-two (48%) PC variants were detected in > 90% of 
the samples, whereas 30 (18%) PC variants were detected 
in < 50% of the samples. Only five (2.9%) PC variants were 
detected in < 10% of the samples. Among the glycero-
phospholipids, LPC were detected in the lowest propor-
tions of samples, as none of the variants were detected in 
> 90% of the samples. Twenty out of 23 (87%) LPC vari-
ants were detected in < 50% of the samples, and 11 (48%) 
LPC variants were detected in < 10% of the samples.

https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.18637/jss.v025.i01
https://CRAN.R-project.org/package=factoextra%3E
https://CRAN.R-project.org/package=factoextra%3E
https://CRAN.R-project.org/package=pheatmap%3E
https://CRAN.R-project.org/package=pheatmap%3E
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Differential metabolites levels among patient groups
To explore differences in metabolite levels among the 
patient groups, we performed PCA and supervised hier-
archical clustering analysis (HCA) with 201 metabolites 
that were detected in > 90% of the CSF samples.

In the PCA plot, HC formed a relatively homogeneous 
and distinct cluster, while the other patient groups mostly 
overlapped, with LM showing the widest distribution 
(Fig. 2A). In the supervised HCA, the metabolite profiles 
of the two PBT subgroups (BM and BT) showed high 
similarity to each other (Fig. 2B). The metabolite profile 
of ID was also relatively similar to those of the two PBT 
subgroups, whereas the metabolite profile of LM was 
divided into two patterns: one (59%) similar to that of HC 
and the other (41%) similar to those of PBT and ID.

While the volcano plot reveals some metabolites with 
differential levels between LM and NonLM groups, the 
lack of distinct patterns or standout features limits the 
identification of specific significant metabolites (Supple-
mentary Fig. 1).

Differential level of metabolite classes among PBT, LM, and 
HC
To gain a more in-depth understanding of different meta-
bolic activities among PBT, LM, and HC, we averaged the 
measured metabolite levels in each group according to 
metabolite classes (Supplementary Table 3). Amino acids 
and biogenic amines levels showed no significant differ-
ence among the patient groups (Supplementary Fig.  2). 
Hexose levels were affected by each patient’s history of 

intravenous infusion and steroid use (Supplementary 
Table 4). Among the lipids, CE showed higher levels in 
LM than in PBT or HC, but the differences failed to reach 
statistical significance (Fig.  3A). Other non-polar glyc-
erides (DG and TG) showed significantly higher levels 
in PBT and LM than in HC (Fig.  3B). Among the glyc-
erophospholipids, PC levels followed a pattern similar to 
that of CE, with significantly higher levels in LM than in 
PBT or HC, whereas LPC levels were significantly lower 
in PBT compared to LM or HC (Fig.  3C). Among the 
sphingolipids, SM had higher levels in LM than in PBT 
or HC, similar to the pattern of PC level, whereas Cer 
showed a pattern similar to that of the glycerides, with 
higher levels in PBT and LM than in HC (Fig. 3D).

For the ACs, we calculated average levels separately 
according to the fatty acid chain length, based on a pre-
vious report indicating that long-chain ACs are trans-
porters involved in mitochondrial β-oxidation [21]. Total 
AC and short/medium-chain AC levels were apparently 
higher in LM than in PBT or HC, although the differ-
ence failed to reach statistical significance, whereas long-
chain AC level was significantly lower in PBT than in LM 
or HC (Fig.  3E). To determine whether the low level of 
long-chain AC in PBT was due to decreased production 
or increased consumption, we calculated the enzymatic 
activities of carnitine palmitoyltransferase 1 [CPT1; (AC 
C16 + AC C18) / carnitine], which enables AC transport 
from the cytosol to the mitochondria, and carnitine pal-
mitoyltransferase 2 [CPT2; (AC C16 + AC C18:1) / AC 
C2], which converts mitochondrial AC into Acyl-CoA 

Fig. 1  Measured metabolites in cerebrospinal fluid. A The numbers of metabolites detected in different proportions of samples. B The numbers of 
metabolites in each metabolite class detected in different proportions of samples. Notes: AC, acylcarnitines; CE, cholesteryl esters; Cer, ceramides; DG, 
diglycerides; H1, hexoses; LPC, lysophosphatidylcholines; PC, phosphatidylcholines; SM, sphingomyelins; TG, triglycerides
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Fig. 2  Differentially detected metabolites among patient groups. A Principal component analysis plot showing a relatively discrete HC cluster and a 
widely distributed LM cluster. B Supervised clustering (LM vs. HC) heatmap of 117 samples with CSF metabolomes was generated using 201 metabolites 
measured > 90% of samples. Notes: BM, brain metastasis; BT, brain tumor; HC, healthy control; ID, inflammatory disease; LM, leptomeningeal metastasis; 
AA, aminoacids; BA, biogenic amines; AC, acylcarnitines; CE, cholesteryl esters; DG, diglycerides; TG, triglycerides; PC, phosphatidylcholines; Cer, cerami-
des; SM, sphingomyelins; H1, hexoses
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to enable the return of carnitine to the cytosol [22]. The 
enzymatic activity of CPT1 was significantly lower in 
PBT than in LM or HC (Supplementary Fig. 2). Although 
the enzymatic activity of CPT2 showed a similar pat-
tern, only the difference between HC and PBT was sig-
nificant. Therefore, we tentatively concluded that the 
lower level of long-chain AC in PBT compared with LM 
and HC resulted from low efficacy of β-oxidation due to 
decreased CPT1 and CPT2 enzymatic activities.

Discriminative metabolomic profiles
To determine if the CSF metabolomic profiles have 
diagnostic value, we extracted candidate metabolites 
and composed discriminative metabolite profiles that 
achieved AUC = 1.0.

LM versus HC
To discriminate between LM and HC, 179 metabolites 
met the criteria of candidate metabolites, defined as 
those either detected in > 90% of all CSF samples or with 
a proportion difference of ≥ 75% between two groups. 
Among these, 28 metabolites were identified as discrimi-
native (AUC > 0.75; Supplementary Table 5), compris-
ing 9 AC, 8 amino acids, 5 PC, 3 glycerides, 2 biogenic 
amines, and 1 Cer. All AC levels were higher in HC than 
in LM, while 7 out of 8 amino acids had higher levels in 

LM than in HC. The top five metabolites—Ala, PC(42:7), 
PC(30:3), PC(37:0), and Tyr—with individual AUCs 
of 0.87 to 0.92, achieved an AUC of 1.0 collectively in a 
logistic regression model (Fig. 4).

PBT and ID versus HC
As we assumed that LM likely shares characteristics 
of both CNS tumors and inflammation in terms of pial 
attachment and disruption, we first identified metabo-
lites that could be used to discriminate between HC and 
either PBT or ID (Supplementary Table 6). Then, we 
identified metabolites to discriminate separately between 
PBT and HC and between ID and HC.

Out of 241 candidate metabolites for discriminating 
between PBT and HC, we identified 178 discriminative 
metabolites, including 26 metabolites showing both 100% 
sensitivity and 100% specificity (AUC = 1.0). All 26 dis-
criminative metabolites were lipids, and among these, all 
14 AC and 1 LPC had higher levels in HC than in PBT, 
whereas all 11 PC had higher levels in PBT than in HC.

Among 223 candidate metabolites for discriminating 
between ID and HC, 153 were identified as discrimina-
tive, with 46 showing an AUC of 1.0. Except for putres-
cine, all of these were lipids. Of the 46 molecules with an 
AUC of 1.0, all 21 AC, 6 out of 20 PC, both Cer, and LPC 
had higher levels in HC than in ID, whereas 14 out of 20 

Fig. 3  Levels of each lipid metabolite class according to tumor status. A Cholesteryl esters. B Glycerides. C Glycerophospholipids. D Sphingolipids. E Acyl-
carnitines. Error bars represent the mean standard error. (* 0.01 < p < 0.05; ** 0.001 < p < 0.01; *** p < 0.001). Notes: HC, healthy control; LM, leptomeningeal 
metastasis; PBT, parenchymal brain tumor
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PC, DG, and putrescine had higher levels in ID than in 
HC.

LM versus PBT
As about 75% of LM stems from pre-existing BM or brain 
tumor [23], it is valuable to know if metabolite profiles 
can discriminate between LM and PBT, which has a high 
risk of developing LM. Among 208 metabolites that met 
the criteria of candidate metabolites, 44 were discrimina-
tive (Supplementary Table 7). The discriminative metab-
olites with the top 21 AUC values (ranging from 0.83 to 
0.94), all of which were AC or PC, together achieved an 
AUC of 1.0 in a logistic regression model. Among these, 
all 18 AC, PC(38:1), and PC(36:0) had higher levels in LM 
than in PBT, with PC(44:3) being the exception.

Characteristics of LM discriminative metabolites compared 
with PBT and ID discriminative metabolites
We tentatively defined the metabolites that were discrim-
inative between PBT and HC to be ‘tumorous,’ between 
ID and HC to be ‘inflammatory,’ and between LM and 
PBT to be ‘LM diagnostic.’ Then, we examined the simi-
larities and differences among these metabolite sets (Sup-
plementary Table 8).

127 metabolites were shared between the ‘tumorous’ 
and ‘inflammatory’ sets, accounting for 71% of all ‘tumor-
ous’ metabolites and 83% of all ‘inflammatory’ metabo-
lites (Fig.  5A). These included 57 glycerophospholipids 

(45%), 36 AC (28%), 12 glycerides (9.4%), 11 amino acids 
(8.7%), 7 sphingolipids (5.5%), 2 biogenic amines, 1 cho-
lesterol ester, and hexose. All 127 metabolites had the 
same qualitative pattern of increased or decreased lev-
els in both PBT and ID relative to HC. For example, Thr 
level was higher in both PBT and ID than in HC (Fig. 5B), 
whereas AC(4: 0) level was vice versa (Fig.  5C). These 
findings suggested that many of the ‘tumorous’ metabo-
lites shared production/consumption pathways with 
inflammatory responses. We next examined the dif-
ferences between metabolites that were unique to the 
‘tumorous’ set or the ‘inflammatory’ set. Among the 51 
metabolites that belonged to the ‘tumorous’ set and not 
the ‘inflammatory’ set, glycerides were the most common 
group (n = 26, 51%), followed by glycerophospholipids 
(n = 14, 27%), with the remaining ones comprising 4 AC, 4 
amino acids, and 3 sphingolipids. The 26 metabolites that 
belonged to the ‘inflammatory’ set and not the ‘tumor-
ous’ set comprised 18 glycerophospholipids (69%), 5 AC 
(19%), 2 amino acids, and creatinine. Among the lipid 
metabolites in the two unique sets, polar lipids (glycero-
phospholipids) were dominant in the ‘inflammatory’ set, 
whereas non-polar lipids (AC and glycerides) were domi-
nant in the ‘tumorous’ set (Supplementary Fig. 3).

Next, we evaluated the overlap between the ‘LM diag-
nostic’ set and the ‘tumorous’ and ‘inflammatory’ sets. 40 
out of 44 (91%) ‘LM diagnostic’ metabolites were com-
mon to both the ‘tumorous’ set and the ‘inflammatory’ 
set, with the four exceptions being CE(17:2), PC(41:5), 
PC-O(36:3), and AC(3:0), the last of which was shared 
by the ‘tumorous’ set (Fig.  5A). When we evaluated 
the diagnostic performance of these four metabolites 
unique to LM diagnostic in a logistic regression model, 
they discriminated LM from PBT achieving an AUC of 
0.897 (Fig.  5D). Among the 40 metabolites in the ‘LM 
diagnostic’ set that were also in the ‘tumorous’ set and 
the ‘inflammatory’ set, 36 (90%) had higher levels in LM 
than in PBT, with the exceptions being AC(7:0), PC(40:7), 
PC(44:3), and Thr. In addition, the levels of all 40 of 
these shared metabolites in LM was between those in 
HC and ID/PBT. For example, the level of AC(4:O-OH) 
was lowest in ID/PBT, higher in LM, and highest in HC 
(HC > LM > ID/ PBT), whereas that of Thr was vice versa 
(ID/PBT > LM > HC).

Metabolites discriminating other clinical characteristics 
such as CSF sampling sites, intra-axial versus extra-axial 
brain tumors, and glial vs. non-glial malignant tumors
We explored the possibility that CSF metabolites could 
be used to differentiate additional clinical variables, 
including CSF sampling sites, metastasis patterns (lep-
tomeningeal vs. parenchymal), tumor origins (metastatic 
vs. primary), benign extra-axial vs. malignant intra-axial 

Fig. 4  Receiver operating curves of the top five discriminative metabolites 
for leptomeningeal metastasis and healthy controls. The area under the 
curve (AUC) for a logistic regression model included all five metabolites 
is also shown. Notes: HC, healthy control; LM, leptomeningeal metastasis
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BT, and glial vs. non-glial malignant BT (Supplementary 
Table 9).

Sampling sites were evaluated within the LM group. 
122 metabolites were discriminative between lum-
bar (n = 11) and ventricular (n = 38) sampling sites 
(AUC = 0.75 ~ 0.91). Among these, 99 (81%) had higher 
levels in samples taken from lumbar sites, whereas lev-
els of 33 metabolites (19%) were higher in ventricu-
lar samples. A logistic regression model including the 
metabolites with the top 11 AUC values [Pro, AC(2:0), 
PC(34:4), Val, AC(0:0), PC-O(40:5), AC(7:0), PC(38:1), 
Gly, PC(34:3), and PC-O(34:1)] achieved 100% sensitivity 
and specificity.

We evaluated the ability of the metabolites in the LM 
(n = 49) and BM (n = 15) samples to discriminate between 
leptomeningeal and parenchymal metastases. 52 metab-
olites were discriminative (AUC = 0.75 ~ 0.93), and 42 
(81%) of these had higher levels in LM than in BM, 
whereas the remaining 10 had higher levels in BM than 
in LM. A logistic regression model including the metab-
olites with the top 12 individual AUC values [AC(4:0-
OH), AC(8:1), AC(8:0), AC(18:1-OH), AC(5:0), AC(11:0), 
AC(5:1), AC(6:0), AC(9:0), AC(7:0-DC), AC(6:0-OH), 
and PC(36:0)] reached an AUC of 1.0 overall.

Under the assumption that there might be differences 
in tumor microenvironments, we evaluated the abil-
ity of the metabolites in the BM (n = 15) and BT (n = 30) 

Fig. 5  Characteristics of discriminative metabolites for leptomeningeal metastasis, parenchymal brain tumor, and inflammatory disease. A Venn diagram 
of discriminative candidate metabolites between ‘LM diagnostic’ (LM vs. PBT) and ‘tumorous’ (PBT vs. HC) and ‘inflammatory’ (ID vs. HC) samples. B-C Box 
plots depicting levels of (B) threonine and (C) AC(4:0-OH) among patient groups. D Logistic regression model with three metabolites that were exclusive 
to the LM diagnostic profile. Notes: PBT, parenchymal brain metastasis; HC, healthy control; ID, inflammatory disease; LM, leptomeningeal metastasis; Thr, 
threonine
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samples to discriminate between metastatic and pri-
mary brain tumors. Only three metabolites—PC(32:5), 
PC(32:5), and AC(3:1)—were discriminative, with AUCs 
of 0.76 to 0.81. All showed higher levels in BM than in 
BT.

To identify metabolites that could discriminate accord-
ing to tumor malignancy, we compared the levels of 
metabolites in samples from patients with benign extra-
axial tumors (n = 10) and malignant intra-axial tumors 
(n = 20). We found 19 discriminative metabolites with 
individual AUCs of 0.76 to 0.86. Among these, 16 (84%) 
metabolites had higher levels in extra-axial benign BT 
samples than in intra-axial malignant BT samples. A 
logistic regression model including the metabolites 
with the top eight individual AUCs [PC(38:3), PC(38:7), 
TG(54:5), PC(38:6), PC(34:2), PC(40:9), creatinine, and 
AC(3:0-OH)] achieved 100% specificity and sensitivity.

To identify metabolites that could discriminate 
between malignant intra-axial tumors with different ori-
gins, we compared the levels of metabolites in samples 
from patients with gliomas (n = 10) and non-glial malig-
nant BT (n = 10). We found 48 discriminative metabolites 
with individual AUCs of 0.76 to 0.90. Among these, 31 
(65%) had higher levels in glioma samples than in non-
glial malignancy samples. A logistic regression model 
including the metabolites with the top eight individual 
AUCs [(PC(36:3), PC(39:1), TG(50:4), PC(35:3), PC(37:3), 
PC-O(38:3), CE(16:0), and PC(33:5)] achieved 100% sen-
sitivity and specificity.

Discussion
We investigated CSF metabolomics in LM using targeted 
MS to achieve quantitative comparative profiling with 
control groups including patients with other BT or BM. 
Although the number of CSF samples in this study is too 
small for our results to be conclusive, we were able to 
achieve diagnostic metabolic profiling with 100% sensi-
tivity and 100% specificity.

The usefulness of MS-based CSF metabolomic profiling
Through both non-targeted and targeted metabolomics, 
previous studies showed that metabolomic profiles of 
cancer tissues or plasma could discriminate between 
patients with cancer and healthy controls and provide 
information about cancer pathogenesis [7, 22]. As CSF is 
in direct contact with the CNS, it can inherently reflect 
metabolic changes arising from CNS disease processes. 
For example, tau and amyloid β protein accumulation 
in neurons of Alzheimer’s disease patients was better 
reflected in CSF than in serum, and the levels estimated 
from CSF correlated with disease progression [24, 25]. 
As advancements in MS resolution have made detect-
able LMIs in CSF plentiful enough to be analyzed, many 
studies using non-targeted MS with a relatively small 

number of samples have been able to set up discrimina-
tive profiles for different patient groups [19]. Dekker et al. 
investigated the use of MALDI-TOF MS-based profiling 
of trypsin-digested CSF peptides to discriminate between 
metastatic breast cancers with (n = 54) or without LM 
(n = 52) [26]. In their study, 164 out of 895 possible peak 
positions were discriminative with 79% sensitivity and 
76% specificity for detecting LM; however, the accuracy 
was not superior to that of traditional diagnostic meth-
ods such as CSF cytology or gadolinium-enhanced MRI 
[16, 18]. In our previous study using non-targeted tri-
ple-TOF MS, we identified 1,440 differentially detected 
LMIs among 10,905 identifiable LMIs, and 21 selected 
LMIs were able to completely discriminate LM (n = 67) 
from BT (n = 20) and BM (n = 9). However, appropriate 
standard materials and protocols for the identification 
and quantification of LMIs were needed for validation 
studies.

Compared with non-targeted studies, targeted MS-
based metabolomic studies have many advantages, 
including that (1) the identified metabolomic profile can 
unveil associated molecular changes, (2) quantitative 
measurements enable accurate comparisons of metabo-
lite levels with standard materials, and (3) the use of a 
standard protocol can overcome batch effects from mul-
tiple measurements and enable multi-institutional data 
gathering [7, 27]. For these purposes, it is important to 
evaluate all metabolites related to the molecular pathway 
of interest together and to have an appropriate internal 
standard. In this regard, commercially available targeted 
MS kits, equipped with standardized protocols and inter-
nal standards, not only can be a useful diagnostic aid 
in clinical practice but also help us to gain insights into 
dysregulated metabolism of cancer cells and their inter-
action with the tumor microenvironment. While non-
commercial, self-retrieved targeted MS studies typically 
detect a limited number of metabolites, commercially 
available kits offer standardized protocols that reduce 
measurement variability and continue to expand the 
range of measurable metabolites. With ongoing upgrades 
and advancements, these kits may eventually cover most 
metabolites within specific metabolic pathways. A study 
by Siskos et al. using the Absolute IDQ®-p180 kit (includ-
ing 40 AC, 21 amino acids, 19 biogenic amines, 15 sphin-
golipids, and 90 glycerophospholipids) in human serum 
samples showed a median inter-laboratory coefficient of 
variation (CV) of 7.6%, with 85% of metabolites exhibit-
ing a median inter-laboratory CV < 20% [27]. Another 
study evaluated CSF metabolites using the same p180 
kit from Alzheimer’s disease patients, and dichotomized 
patient groups according to amyloid β and tau lev-
els showed that levels of a specific SM lipid metabolite 
(d18:1/18:0) were in accordance with disease progression 
[28]. In a later study, Carlsson et al. applied the upgraded 
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Absolute IDQ-p400® kit for CSF metabolomic analysis in 
healthy controls and multiple sclerosis patients, detecting 
196 (48%) of 408 targeted metabolites above the limit of 
detection, with 35 absolutely quantified [20]. These stud-
ies highlight the potential for disease-specific profiling 
and the expanded coverage of commercially available tar-
geted MS kits.

In the present study, we utilized the current Absolute 
IDQ-p400® targeted metabolomics kit in conjunction 
with high-resolution mass spectrometry (HRMS) to ana-
lyze CSF samples from HC, LM, PBT, and ID groups. As 
a result, we could successfully discriminate LM from PBT 
using a logistic regression model including 21 AC and 
PC lipid metabolites. Three lipid molecules that were not 
shared between the discriminatory metabolite sets for 
tumorous and inflammatory diseases could differentiate 
LM from PBT with an AUC of 0.90. Our results suggest 
the possibility of using CSF lipidomics as an aid to aug-
ment CSF cytology for patients with LM.

The possibility for CSF metabolomics to reflect CNS tumor 
activity or interaction with the tumor microenvironment
Almost all cancer cells, regardless of their type, repro-
gram their metabolism to enable neoplastic transforma-
tion, tumor progression, and therapy resistance [29, 30]. 
The dependency of cancer cells on inefficient anaerobic 
glycolysis, known as the Warburg effect, is an example 
of this metabolic reprogramming [21]. As a consequence 
of the Warburg effect, a huge amount of glucose is con-
verted to NADPH in the pentose phosphate pathway, 
resulting in an over-reduced state of the mitochondrial 
matrix. Increased fatty acid β-oxidation and lipid synthe-
sis can result from metabolic reprogramming in cancer 
cells, as many in vitro studies have reported dysregulated 
glucose and amino acid metabolism in cancer cells [21]. 
However, in clinical samples, especially in biofluids, it is 
difficult to evaluate exact differences or shifts of glycoly-
sis or the Krebs cycle. The reasons for this include that 
(1) it is difficult to measure all related metabolites and 
intermediate byproducts together, (2) it is not practical 
to restrict all nutritional inputs to patients at the same 
level, and (3) steroids and intravenous supplements have 
confounding effects on the measurements. In the pres-
ent study, we confirmed that hexose levels were affected 
by intravenous infusion or steroid use history, and amino 
acids and their metabolic intermediates failed to show 
significant differences between patients with CNS cancer 
and healthy controls.

Fatty acids with various lengths and degrees of desatu-
ration are the main building blocks of lipid species that 
are abundant in the CNS, including DG, PC, and their 
byproducts such as phosphatidic acid, phosphatidyl-
ethanolamine, and phosphatidylserine, which can be 
involved in various metabolic pathways to accomplish 

key functions such as synaptogenesis and impulse con-
duction [29, 31]. Their structural diversity contributes 
to the composition of various biological membranes, cell 
signaling via secondary messengers, and energy storage 
[29]. In the context of metabolism, cancer cells rely on 
their ability to quench metabolic stress by increasing de 
novo biosynthesis and exogenous uptake of fatty acids to 
maintain rapid proliferation.

High PC levels have been consistently observed in tis-
sues from various types of cancer, including breast [32], 
colorectal [33], and thyroid papillary [34] cancers and 
hepatocellular carcinoma [22], and increased cell mem-
brane turnover in cancer cells was suggested to be an 
underlying mechanism. Furthermore, PC catabolism 
generates phosphatidic acid, diacylglycerol, LPC, and 
arachidonic acid, which have protumoral effects [35]. In 
the present study, PC levels were significantly increased 
in LM compared with those in PBT and HC, possibly as 
a result of neuronal/glial-cell membrane shedding, which 
is a natural consequence of floating cancer cells adher-
ing to the CNS pial membrane. In the same context, lev-
els of SM, which is enriched in CNS cell membranes as 
a byproduct of PC, were also increased in LM compared 
with those in the other groups.

LPC and PC derivatives, as byproducts of PC metabo-
lism, are known to be consumed at elevated rates in can-
cer cells and may have a role in metastasis and immune 
reaction [35, 36]. Taylor et al. measured serum LPC along 
with nutritional and inflammatory parameters in 59 
patients with cancer [37]. The LPC levels in the patients 
corresponded to the lower limit of those in healthy con-
trols and were inversely correlated with the levels of 
plasma C-reactive protein and whole-blood hydrogen 
peroxides. Based on those findings, the authors suggested 
that LPC concentrations are associated with high meta-
bolic activity and activated inflammatory processes. In 
the present study, LPC levels were significantly decreased 
in PBT compared with LM and HC. Although we did not 
directly measure choline kinase activity, we assume that 
these results were due to increased consumption of LPC 
by cancer cells, as PBT had the greatest mass of cancer 
cells among the three groups of comparison.

AC play a major role in regulating intracellular metab-
olism, serving as carriers to transport activated long-
chain fatty acids into mitochondria for β-oxidation as a 
major source of energy for cell activities [38]. Elevated 
fatty acid oxidation in cancer cells contributes to rapid 
proliferation, phospholipid synthesis, and chemo-resis-
tance [21, 30]. Studies of tissue and serum AC levels in 
patients with liver disease suggested that AC levels were 
proportional to disease progression in fatty liver dis-
ease, hepatitis B viral hepatitis, cirrhosis, and hepato-
cellular carcinoma [38, 39]. In accordance with different 
metabolic pathways in the mitochondria, elevated serum 
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levels of long-chain AC and decreased levels of medium 
and short-chain AC have been reported in cirrhosis and 
hepatocellular carcinoma [9, 40]. In our study, the levels 
of long-chain AC, but not short/medium-chain AC, were 
decreased in PBT compared with those in LM and HC. 
Although it is not conclusive from this exploratory study, 
decreased long-chain AC levels might result from ineffi-
cient AC shuttling between cytosol and mitochondria, as 
the calculated enzyme activity of both CPT1 and CPT2 
was significantly lower in PBT than in HC.

Limitations of a commercial targeted MS metabolomics 
profiling in clinical practice
A primary limitation of the p400 kit is its inability to dif-
ferentiate key monosaccharides and TCA cycle deriva-
tives, measuring only hexoses; as a result, this study 
could not assess cancer-specific alterations in glycolysis 
or glucose metabolism. Accurate assessment of glucose 
metabolism in such studies would require strict control 
of intravenous fluid and steroid administration.

Additional limitations include the relatively small num-
ber of CSF samples in each group of comparison and the 
lack of a validation study for the selected discriminating 
metabolites. Validation was particularly challenging for 
lipid metabolites, given the variability in carboxyl chain 
lengths and saturation of each AC, PC, and SM variant, 
and their subclass interactions, which are not yet fully 
understood [41, 42]. Additionally, we had not initially 
balanced demographic profiles when selecting samples, 
focusing instead on ensuring sufficient number of sam-
ples of each CNS tumor type and disease of interest for 
comparison. Consequently, we did not perform statistical 
verification on these demographic profiles, as the sample 
sizes were too limited to provide robust statistical power. 
In the future studies, we should not only perform a vali-
dation study with a large number of samples but also pre-
pare a case-control cohort study to minimize potential 
biases arising from demographic and clinical variables, 
such as nutritional and systemic cancer status, before 
advancing to clinical trial [37].

Another weakness of this study is that, unlike metabo-
lites in tissues per se, metabolites in biofluids can come 
not only from cancer cells but also from normal cells 
composing the organs (e.g., brain parenchymal cells in 
CSF). Thus, the levels of tumor-originated metabolites 
are likely affected by the tumor burden, and it is practi-
cally impossible to control the tumor burden in intra-
group or inter-group comparisons. Furthermore, as we 
did not analyze the corresponding serum levels of CSF 
metabolites, it is hard to exclude the influence of serum 
metabolites that cross the brain-CSF barrier [43], which 
is affected not by the CNS tumor status but by the sys-
temic cancer status.

Despite these limitations, we believe that our CSF 
metabolomics profiles of patients with LM reflect the 
unique environment of floating cancer cells and the 
driver mutations allowing adaptation to an aqueous 
phase. Unlike the nutrient- and growth factor–enriched 
conditions which is relevant to solid tumor survival—a 
setting that has been extensively studied—LM presents 
a distinct environment requiring further investigation. 
To advance our understanding of this unknown unique 
pathogenesis, a multi-omics approach including genom-
ics and proteomics of CSF from LM patients is needed, 
which we are currently developing as another project.

Conclusion
Using a commercial targeted MS metabolomics kit that 
measures 408 metabolites, we were able to quantify the 
levels of 201 metabolites in > 90% of CSF samples from 
healthy controls and patients with LM, parenchymal 
BT, or CNS inflammation. Most of the metabolites that 
were discriminative among different disease states were 
PC, LPC, or AC lipid metabolites, whereas amino acids, 
biogenic amines, and hexoses failed to show significant 
differences among patient groups and controls. These 
discriminative lipid metabolites warrants further investi-
gation to determine their CNS distribution and quantifi-
cation in different cell types.

A validation study of our discriminative metabolic CSF 
profiles should be performed with as many CSF samples 
as possible in a controlled cohort, and the kit should 
expand its coverage about glucose metabolism to enable 
us to differentially measure compounds from the War-
burg effect, TCA cycle, pentose phosphate pathway and 
one carbon metabolism etc.
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