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Abstract 

Background Glycosphingolipids (GSLs) are membrane lipids composed of a ceramide backbone linked to a gly-
can moiety. Ganglioside biosynthesis is a part of the GSL metabolism, which involves sequential reactions catalyzed 
by specific enzymes that in part have a poor substrate specificity. GSLs are deregulated in cancer, thus playing a role 
as potential biomarkers for personalized therapy or subtype classification. However, the analysis of GSL profiles is com-
plex and requires dedicated technologies, that are currently not included in the commonly utilized high-throughput 
assays adopted in contexts such as molecular tumor boards.

Methods In this study, we developed a method to discriminate the enzyme activity among the four series 
of the ganglioside metabolism pathway by incorporating transcriptome data and topological information of the met-
abolic network. We introduced three adjustment options for reaction activity scores (RAS) and demonstrated their 
application in both exploratory and comparative analyses by applying the method on neuroblastic tumors (NTs), 
encompassing neuroblastoma (NB), ganglioneuroblastoma (GNB), and ganglioneuroma (GN). Furthermore, we inter-
preted the results in the context of earlier published GSL measurements in the same tumors.

Results By adjusting RAS values using a weighting scheme based on network topology and transition probabilities 
(TPs), the individual series of ganglioside metabolism can be differentiated, enabling a refined analysis of the GSL 
profile in NT entities. Notably, the adjustment method we propose reveals the differential engagement of the ganglio-
side series between NB and GNB. Moreover, MYCN gene expression, a well-known prognostic marker in NTs, appears 
to correlate with the expression of therapeutically relevant gangliosides, such as GD2. Using unsupervised learning, 
we identified subclusters within NB based on altered GSL metabolism.

Conclusion Our study demonstrates the utility of adjusting RAS values in discriminating ganglioside metabo-
lism subtypes, highlighting the potential for identifying novel cancer subgroups based on sphingolipid profiles. 
These findings contribute to a better understanding of ganglioside dysregulation in NT and may have implications 
for stratification and targeted therapeutic strategies in these tumors and other tumor entities with a deregulated GSL 
metabolism.
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Background
Gangliosides are sialylated glycosphingolipids (GSLs) found 
in high concentration in the nervous system [1, 2]. Ganglio-
sides are composed of a lipid anchor, consisting of sphin-
gosine, a fatty acid of different lengths, and a polar head 
group composed of sialylated oligosaccharides (Fig.  1A) 

[1, 2]. The GSL biosynthesis pathway, shown in Fig. 1B, is 
a complex series of coordinated reactions occurring in the 
Golgi apparatus [3, 4]. Early steps in this pathway, which 
guide into a-, b-, and c-series are performed with enzymes 
of relative high substrate specificity, whereas downstream 
enzymes are promiscuitive and elongate all four series [5]. 
This circumstance results in the fact that the same enzymes 

Fig. 1 Molecular structure of disialoganglioside GD2 and the GSL biosynthesis pathway with focus on ganglioside biosynthesis. A) Exemplarily, 
GD2’s head group consists of β-Glucose (Glc), linked to the ceramide backbone, β-galactose (Gal), N-acetyl-D-galactosamin (GalNAc), and two 
N-acetylneuraminic acid molecules (NeuNAc). The sphingoid base and the fatty acid of the ceramide anchor are respectively blue and red. 
B) The GSL biosynthesis pathway starts with the synthesis of glucosylceramide (GlcCer) from ceramide and the further synthesis from GlcCer 
to lactosylceramide (LacCer). The addition of sulfate groups to LacCer leads to lactosylceramide sulfate (SM3). From LacCer the biosynthesis pathway 
splits into three subseries, the globo series, the lacto- and neolacto series, and the ganglio series. The ganglio-series consists of four subseries, 
the 0-, a-, b-, and c-series. The genes coding for the enzymes responsible for the ganglioside biosynthesis are B4GALNT1, B3GALT4, ST3GAL2/3/5, 
and ST8SIA1/3/5. Figure elements created with Biorender
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are involved in reactions of all four series, for example, the 
protein encoded by B3GALT4 converts GA2, GM2, GD2, 
and GT2 into the more complex gangliosides GA1, GM1, 
GD1b, and GT1c, respectively. Further, the pattern of gan-
glioside expression changes during the development in 
normal brain tissues. Simple gangliosides such as GD2 are 
expressed in the embryo, while mature neurons express 
complex gangliosides of the a-, and b-series, namely GM1a, 
GD1a, GD1b, and GT1b [6–9].

GSL profiles are often found to be deregulated in 
tumors [10, 11]. These changes have been particularly 
studied in neuroblastic tumors (NT) [12–15]. NTs are 
the most common extra-cranial solid tumors in chil-
dren and include neuroblastoma (NB), ganglioneuro-
blastoma (GNB), and ganglioneuroma (GN) [16–18]. 
They arise from primitive neuroectodermal cells of the 
neural crest, which give rise to the sympathetic nervous 
system during the embryonic development [18]. One 
prominent feature of NTs is their biological and clinical 
heterogeneity. NT range from immature, undifferenti-
ated to mature, differentiated tumors, where GNB and 
GN represent the mature end of this range [18, 19]. NBs 
often express simple gangliosides, particularly GD2, 
lacking or having reduced concentrations of the more 
complex a-, and b-series gangliosides. More mature 
NT such as GNB express very low amounts of GD2 and 
show instead an increased level of complex gangliosides 
of the a- and b-series [15, 20].

Ganglioside profiles in NB have been linked to prog-
nosis and are relevant for therapy. Patients with tumors 
expressing higher concentrations of the b-series ganglio-
sides, GD1b, and GT1b have a better prognosis [21]. The 
ganglioside GD2 is used as a target for the treatment of 
high-risk NB with monoclonal antibodies (Dinutuximab 
and Naxitamab, both already used in clinical protocols) 
and CAR-T cells (in clinical studies for several tumor 
entities) [22–24].

The simple gangliosides GD3 and GD2 regulate several 
receptors and signaling cascades and contribute to the 
undifferentiated state of neural stem cells and NB [25]. 
Discordant hypotheses exist on the mechanism of GD2 
accumulation, with some reports claiming a low expres-
sion of ST8SIA1 (required for the synthesis of GD3) and 
others a high expression of the same gene as the reason 
for GD2 expression [26, 27].

To understand and exploit GSLs, a better characteri-
zation of their molecular profiles is necessary. However, 
the measurement of the different GSLs is complex and 
requires dedicated protocols and instruments such as 
thin-layer chromatography and mass spectrometry 
[15]. RNA sequencing (RNA-seq) data obtained from 
patient-derived samples, on the other hand, provides 

a powerful opportunity for studying the expression of 
the genes required for ganglioside synthesis, as it is fre-
quently collected during high-dimensional molecular 
cancer profiling, such as in the context of a Molecular 
Tumor Board [28]. However, the translation of tran-
scriptome data into ganglioside profiles is challenging, 
and few models have been proposed so far to predict 
the expression of selected gangliosides from RNA-seq 
data [29–31].

In the following text, the terms network and graph 
are used interchangeably. The GSL biosynthesis path-
way can be studied as a metabolite-centric network, 
where nodes are metabolites and edges represent the 
metabolic reactions. The edges can be weighted by 
the reaction activity scores (RAS) (first introduced by 
Graudenzi A. et  al. (2018)), which can be considered 
as measurement of the activity of each reaction in the 
metabolic graph and is calculated using the normalized 
gene expression levels of a patient sample and the gene-
protein-reaction (GPR) association rules of a genome-
scale metabolic model [32–34]. As a result of the low 
specificity of the involved enzymes, the reaction activ-
ity cannot be distinguished across the four series by 
simply weighting edges of the network by the respective 
RAS values. This prevents the analysis of a cell type-
specific GSL profile based on transcriptional regula-
tion and hinders a more detailed understanding of the 
underlying biological processes and functions associ-
ated with the ganglioside metabolism pathway.

In this study, our primary objectives were 1) to 
develop a method based on RNA-seq data that can 
discriminate between the four series of the ganglio-
side metabolism pathway, 2) to test the method on 
NT entities, and finally 3) to interpret the results in 
the context of published ganglioside measurements. 
We hereby introduced three adjustment methods for 
the RAS by incorporating the network topology and 
its transition probabilities (TPs) across the four series. 
We demonstrated how these weighting schemes can be 
used in 1) an exploratory, unsupervised manner, and 
2) in the direct comparison between several defined 
groups by applying our approach on two NT datasets. 
On the one hand, our approach enhances our compre-
hension of GSL deregulation in NT, and its transfer-
ability suggests potential application to other tumor 
entities, prospectively leading to the development of 
new pre-screening tools for assessing GSL metabolism 
in patients. On the other hand, it is conceivable that 
the method applied here may be transferable to other 
metabolic pathways involving non-specific enzymes, 
broadening its utility beyond the scope of ganglioside 
metabolism.
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Methods
Workflow
We followed the workflow schematically illustrated 
in Fig.  2. Two publicly accessible RNA-seq datasets 
containing NT samples were acquired. The analysis 
workflow was conducted separately for each dataset. 
Both datasets were preprocessed by data normaliza-
tion and log10 transformation with one pseudocount. 
The resulting normalized count matrices were used 
for further processing steps. A GSL metabolic graph 
was constructed (see further details in “Graph con-
struction”  section below), representing the reactions 

between metabolites and genes in the dataset. The RAS 
for each reaction of the metabolic graph were com-
puted resulting in a weighted, directed graph per sam-
ple and a RAS matrix over all samples.

A transition probability (TP) matrix was computed 
for each weighted graph, describing the probabil-
ity of moving from one node to another in the meta-
bolic pathway based on the RAS values of the outgoing 
edges. Two alternative versions of the TP matrix were 
also computed to address the discrimination of the gan-
glioside 0-, a-, b-, and c-series (see subsection “Alter-
native transition probability matrices”). Finally, the 

Fig. 2 Workflow diagram representing the data processing steps (orange rectangles), the input data (black parallelograms), and the intermediate 
outputs (blue parallelograms). NB=Neuroblastoma; GNB=Ganglioneuroblastoma; GN=Ganglioneuroma; DGE=Differential gene expression; 
GSL=Glycosphingolipid; RAS=Reaction activity score; TP=Transition probability
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RAS matrix was adjusted using the transition matrices, 
resulting in four distinct matrices.

The (adjusted) RAS matrices were further used for (1) 
unsupervised data exploration, and (2) differential reac-
tion analysis between groups. For the first approach, 
unsupervised machine learning methods were used for 
exploratory analysis of the adjusted RAS values. This 
includes dimensionality reduction with UMAP, identi-
fication of clusters of samples based on their RAS pro-
files, and the identification of statistically differential 
expressed reactions between clusters. In the differential 
reaction analysis, the dataset-specific groups were com-
pared by computing a log2 fold-change of the RAS val-
ues. P-values per reaction were determined by using the 
Kolmogorov-Smirnov (KS) test.

The workflow was executed entirely in the R environ-
ment (version 4.1.3). Box plots, dot plots and scatter 
plots were generated with ggplot2 (version 3.4.2) [35] 
and plotly (version 4.10.1). Heatmaps were drawn with 
the pheatmap library (version 1.0.12). The networks were 
visualized with the R package igraph (version 1.4.2) [36].

Data acquisition and preprocessing
Two datasets were used:

(1) Expression data and corresponding clinical infor-
mation were obtained from GSE147635 [37] (n=21). This 
dataset contains 6 GN and 15 NB samples. The RASflow 
pipeline was used as the framework for the quantification 
of gene expression [38]. HISAT2 tool [39] in combina-
tion with HTSeq [40] was used on the human genome 
GRCh38 (GCA_000001405.15) and the GENCODE 
annotation (version 31) [41] to retrieve gene counts. In 
the further course of the text this dataset is called GN/
NB dataset.

(2) The Therapeutically Applicable Research to Gen-
erate Effective Treatments (TARGET) NB gene-expres-
sion profile (“RSEM expected_count”) and clinical data 
(n = 162) were acquired from the UCSC Xena database 
(http:// xena. ucsc. edu/) [39] as log2(expected_count + 1) . 
The gene counts were back-transformed to integer 
counts. This dataset contains 26 GNB and 130 NB. Six 
samples of unknown subtypes were excluded. Further, 
this dataset contains the “MYCN.status” variable, result-
ing in 33 MYCN-amplified (+MYCN), 128 without a 
MYCN amplification (-MYCN), and one sample with 
unknown MYCN amplification status. This one sample 
of unknown status was removed. A GNB sample has the 
annotation stating that it is MYCN-amplified. A MYCN 
amplification is rare in GNB, so we also removed it from 
the dataset due to lack of power as it was detected in 
only one sample. The final dataset remained 154 samples 
in total. In the following, we refer to this dataset as the 
TARGET GNB/NB dataset.

All datasets were separately normalized by the median 
of ratios method using the DESeq2 R package (version 
1.34.0) [42]. A pseudocount was added to the counts 
and then log10 transformed. For the distance heatmaps 
of both datasets, the raw counts were normalized and a 
variance stabilizing transformation was applied using the 
vst function of DESeq2.

Graph construction
A metabolite-centric graph, where nodes are metabolites 
and edges connect the metabolites involved in the same 
reactions, was built with the R packages NetPathMiner 
(version 1.30.0) [43] and igraph (version 1.4.2) [36]. The 
metadata of the edges contains the involved enzymes. 
The graph consists of the four pathways (hsa00600, 
hsa00601, hsa00603, hsa00604) from the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) [44] (the KGML 
files were retrieved on 07/07/2022) and represents 
the sum of sphingolipid & glycosphingolipid metabo-
lism including the lacto-, neolacto-, globo-, and ganglio 
series. The reactions R06010 and R06004 representing 
the degradation of GM1 to GM2 and GM2 to GM3 were 
removed from the graph. This is justified because these 
reactions represent the degradation process and are not 
competing enzymatic processes of the biosynthesis. The 
resulting metabolic graph is used in later steps as a tem-
plate graph. Additionally, most enzymes in the ganglio-
side biosynthesis pathway are exclusively involved in the 
GSL pathways [45]. Out of the 90 considered enzymes, 56 
are also involved in non-GSL pathways, which are often 
related to lipids or glycans, such as the Sphingolipid sign-
aling pathway, Lysosome, and Ether lipid metabolism. 
The final graph annotation can be seen in Fig.  S1 and 
Additional file  2  and an igraph object can be found at 
https:// github. com/ arsen ij- ust/ NT_ GSL_ analy sis.

Weighting of the metabolic graph
Computing RAS values
The normalized gene expression values Ci,j of a patient 
sample in the form of an n×m matrix C, where n is 
the number of genes and m is the number of samples, 
are used to compute the RAS. RAS defines the amount 
of activity in a certain condition, for each reaction of 
the metabolic graph (Fig.  3A). RAS was computed as 
described in Graudenzi A. et  al. [32] based on the GPR 
association rules of the genome-scale metabolic model of 
the Homo sapiens (Human1) [46]. GPRs are logical for-
mulas explaining the association between gene products 
in the process of catalyzation of a given reaction. These 
formulas involve logical operators, such as AND and OR. 
Thus, for each sample s = 1, ...n , and each reaction r the 
RAS is computed based on the following distinctions:

http://xena.ucsc.edu/
https://github.com/arsenij-ust/NT_GSL_analysis
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1) Reactions with AND operator (i.e., enzyme 
subunits):

where Ur is the set of genes that encode the subunits of 
the enzyme catalyzing reaction r.

2) Reactions with OR operator (i.e., enzyme 
isoforms):

(1)RASs,r = min(Ci,j : Ur) where Ir is the set of genes that encode isoforms of the 
enzyme that catalyzes reaction r.

RAS values of a sample are used to weight the asso-
ciated edges, resulting in a weighted directed graph 
G = (V ,E,W ) , where V and E are the set of all nodes 

(2)RASs,r =

i∈Ir

Fig. 3 Visual examples of introduced adjustment methods based on transition probability. A An exemplary graph, where nodes represent 
metabolites (a - h) and edges are RAS values of the respective reactions (r). Although formally the reactions from nodes a to c and b to d are 
separate reactions with distinct reaction IDs, the RAS values of these reactions are identical because of the involvement of the exact same genes. 
Therefore, we denote these reactions with identical r-numbers ( r1 ) in this figure. The same also applies to edges r2 and r3 . Ingoing and outgoing 
edges are dashed. B Edge weights are adjusted by multiplying the TP t with the RAS value of the respective reaction r. Exemplary calculations 
of the TPs are given for t1 , t5 , t6 , and t7 . The TP of t2 , t3 , t8 , and t9 are equal to 1 because nodes c, d, e, and f have only one outgoing edge. C First 
alternative adjustment method, in which the TP is equal to 1, recursively takes the TP of the previously incoming edges. D Second alternative 
adjustment method, where exemplary the RAS value r3 is adjusted by the product of TPs along the path starting from the defined node a to node h 
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(metabolites) and edges (reactions) in G, and W is the 
weighted adjacency matrix containing the RAS values. 
Our resulting metabolic graph contains 116 reactions, of 
which two reactions have AND logic, 51 reactions have 
OR logic, and 63 reactions have only one assigned gene.

Computing the transition probability matrix
Let G1,G2, . . . ,Gs be a list of s graphs (one graph per 
sample), where each graph Gi = (V ,E,W ) has an associ-
ated transition matrix Ti . Ti is computed as follows:

Let Wi be the ni × ni weighted adjacency matrix for 
graph Gi , where the element wi,j represents the RAS value 
of the reaction catalyzed from node i to node j in graph 
Gi.

The row sums of Wi can be computed as:

where rsi,j represents the sum of the jth row of Wi.
The transition matrix Ti can be computed by divid-

ing each element of Wi by the corresponding row sum 
(Fig. 3B):

where ti,j represents the element of the transition matrix 
T corresponding to the TP from node i to node j in graph 
Gi . In other words, ti,j is the probability of node j being 
reached in one step by a random walker located in node i.

Alternative transition probability matrices
Further, two alternative transition matrices Ta & Tb are 
computed to address the problem of identical RAS values 
of the 0-, a-, b-, and c-series of the ganglioside metabo-
lism pathway.

In case of Ta , the transition matrix is computed as 
described above. If i = 1 in ti,j , we set ti,j to the TP of the 
incoming edge of node i with the largest probability. If 
the TP of the incoming edge used to set ti,j is also 1, we 
recursively repeat the process to find the TP of the previ-
ous edge until a value  = 1 is found. If no incoming edges 
exist, the TP stays 1 (Fig. 3C).

In case of Tb , let x be a node in Gi . We can compute 
the transition matrix Tb for Gi by computing the sum of 
TPs along all simple paths from x to all other nodes in Gi . 
Specifically, for each simple path Px,j from x to j in Gi , we 
compute the sum of TPs along the path as follows:

(3)rsi,j =

ni∑

k=1

wi,j,k

(4)ti,j =
wi,j

rsi,j

(5)tPx,j =
∏

(i,k)∈Px,j

ti,k

where (i, k) represents the edge in Gi from node i to node 
k. This is similar to the product rule for probability along 
a branch in a tree diagram. This method is illustrated in 
Fig. 3D.

We set tPx,j as the new TP value of the last edge of Px,j . 
As G is not strongly connected, we account for nodes 
that are not reachable from x by setting the TP of the 
respective edges to 0.

In this study, we selected lactosylceramide (C01290) as 
the x-node, since the sphingolipid metabolism pathway 
splits into the lacto-/neolacto-, globo-, and ganglio series 
at this point.

Alternative transition probability matrices
Finally, the original RAS matrix W is adjusted by T, Ta , 
and Tb , as follows, resulting in three additional weight 
matrices per graph Gi.

Consequently, we obtain one matrix MW  , that repre-
sents unadjusted RAS values; three matrices MW1

 (Eq. 6), 
MW2

 (Eq. 7), MW3
 (Eq. 8), which combine the RAS matrix 

with the TPs lowering the RAS values proportionally. 
These matrices represent reactions × samples , where the 
value Mi,j represents the edge weight of reaction i in sam-
ple j.

UMAP plot generation from the adjusted RAS matrices
We generated multiple Uniform Manifold Approxima-
tion and Projection (UMAP) [47] plots using the adjusted 
RAS matrices as input and varied the number of neigh-
bors. The UMAP algorithm is a nonlinear dimensional-
ity reduction method that maps high-dimensional data 
onto a low-dimensional space while maintaining the local 
structure of the data. We visually inspected the UMAP 
plots to identify patterns in the data. The UMAP R pack-
age (version 0.2.10) was used. The choice of parameters 
in UMAP is crucial for achieving a meaningful and bal-
anced representation of the data. UMAP has two pri-
mary parameters:  n_neighbors  and  min_dist, which are 
instrumental in controlling the trade-off between local 
and global structure in the resulting projection. We 
adopted an iterative approach, investigating different n_
neighbors and min_dist values for each RAS adjustment 
method within our study. Through this process, we aimed 
to find a balanced representation between the local and 
global structures of the data. For the GN/NB dataset 
the final  n_neighbors  and  min_dist  values were 3 and 

(6)W1 = W ∗ T

(7)W2 = W ∗ Ta

(8)W3 = W ∗ Tb
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0.1 across all RAS matrices. For the TARGET NB/GNB 
dataset we selected the value 20 for n_neighbors and 0.1 
for min_dist  in case of the RAS matrix and the value 12 
for n_neighbors and 0.1 for min_dist for the adjusted RAS 
matrices. Additionally, to ensure the reproducibility of 
our research given UMAP’s stochastic nature, we used 
the  random_state  parameter to set a seed for random 
number generation.

Clustering the UMAP results
The HDBSCAN clustering method of the dbscan R pack-
age (version 1.1-11) [48] was used to process the UMAP 
manifolds after creating the UMAP graphs. To find clus-
ters, HDBSCAN examines local density peaks in the 
data. High-dimensional data with a variety of densities 
and shapes may be processed with this scalable technol-
ogy. We adjusted the minimum size of clusters (minPts) 
by inspecting the sample number per cluster for differ-
ent values of minPts (Fig. S8) and selected a minPts value, 
where the number of outlier samples (cluster 0) is mini-
mal and the number of samples per cluster is moderate. 
For the TARGET NB/GNB dataset the minPts-value was 
set to 10 and for the GN/NB dataest the minPts-value 
was set to 5. Note, that an optimal minPts value strongly 
depends on the UMAP layout.

Estimating the stability of UMAP results
As UMAP representations are the result of a heuris-
tic algorithm, each time the UMAP plot is generated 
the position of the samples in the UMAP plot differs, 
although the local structure of the data is still preserved. 
To estimate the stability of the UMAPs and identify the 
number of clusters for more than one UMAP without 
cherry-picking one UMAP plot, we iteratively computed 
1000 UMAPs on MW , . . . ,MW3

 , summed up the x- and 
y-coordinates of each sample, and plotted 50 random 
selected iterations as a line plot. Additionally, we com-
puted the C-index, the Calinski-Harabasz index, and the 
silhouette score across the iterations to assess the cluster-
ing performance by using the R package clusterCrit (ver-
sion 1.3.0).

Marker identification
Marker reactions were identified for each cluster based 
on the results of the clustering analysis. In our study, we 
used the R function findMarkers from the scran package 
(version 1.22.1) [49] to identify markers for each cluster 
identified by HDBSCAN clustering. We set the pval.type 
to “all” and the test.type to “t” to perform a two-sample 
t-test between each cluster and the rest of the samples. 
The function returns a list of significant markers for each 
cluster along with their log-fold change, false-discovery 
rate, and p-values. The resulting list of markers allowed 

us to gain insights into the biological processes and reac-
tions that are enriched in each cluster.

Differential reaction activity analysis between two groups
Using the respective groups of the datasets, namely (1) 
NB MYCN+ against NB MYCN-, (2) GNB against NB, 
and (3) GN against NB, the log2 fold-change of the aver-
age adjusted RAS per reaction was calculated between 
the groups. The nonparametric statistical KS test can be 
used to compare a sample distribution to a reference or 
theoretical distribution. The null hypothesis is that the 
sample comes from the reference distribution. For each 
reaction the KS test was performed with a default p-value 
threshold equal to 0.05, to test if there is a significant 
difference in the adjusted RAS distributions across the 
samples in the two groups. The p-values were adjusted 
for multiple testing with the Benjamini-Hochberg (BH) 
method.

Differential gene expression analysis & gene set 
enrichment analysis
Differential gene expression (DGE) analysis of the RNA-
seq data between 19 TARGET GNB/NB samples related 
to the identified “cluster 1” and 136 samples of the other 
clusters was performed using the DESeq2 package (ver-
sion 1.34.0) by fitting the negative binomial generalized 
linear model for each gene and using the Wald test for 
significance testing. Genes of the count matrix with less 
than 10 counts in the sum of all samples were excluded. 
The False Discovery Rate (FDR) was set to 0.05. Benja-
mini-Hochberg correction was used to obtain adjusted 
p-values. The “apeglm” log2 fold shrinkage method was 
used [50]. Additional file 3 provides the result of DGE.

Differentially expressed genes were used to perform 
enrichment analysis by testing the over-representation of 
Gene Ontology (GO) terms (only terms assigned to the 
category Biological Process were analyzed). The analysis 
was conducted by the R packages topGO (version 2.46.0) 
[51] and pcaExplorer (version 2.20.2) [52]. The elim algo-
rithm [53] was used for the enrichment testing as well 
as Fisher’s exact test. This step was performed indepen-
dently for up- and down-regulated genes. All expressed 
genes of the RNA-seq data were used as background 
genes. An enrichment map was computed by the R pack-
age GeneTonic [54].

Results
Comparison of RAS Adjustment Methods: Investigating 
Differential Reaction Activities of the GSL pathway using 
the TARGET GNB/NB dataset
In this study, we utilized the two datasets, TARGET 
GNB/NB and the GN/NB dataset, to investigate the 
transcriptional regulation of the ganglioside metabolism 
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pathway in NB and GNB or NB and GN, with a particular 
focus on distinguishing the individual series involved in 
ganglioside metabolism. In the following, the RAS values 
of the TARGET NB/GNB dataset were calculated based 
on the final metabolic graph and the respective gene 
expression values of the samples. The RAS matrix W 

was adjusted with one of the three transition probability 
matrices described in the “Methods” section, resulting in 
the four matrices MW  , MW1

 , MW2
 , MW3

 , each of which 
consists of reactions × samples, and where the value Mi,j 
denotes the edge weight of reaction i in sample j. We ana-
lyzed three comparisons based on the TARGET GNB/NB 

Fig. 4 Comparison of RAS-adjusted methods on the GSL pathway between NB +MYCN and GNB. Left dot plots illustrate the adjusted RAS values 
of NB +MYCN (“NB_MYCN_amp” in figure) and GNB, as well as the log2 fold-change between the two groups. The whiskers indicate the standard 
deviation. The color intensity of log2 fold-change points indicates the negative decimal logarithm of the adjusted p-values. On the right, 
the subgraph containing the GSL pathway is visualized. Nodes represent the gangliosides and edges are the metabolic reactions (arrows). The 
arrow color describes the log2 fold-change direction, where red means that the reaction is more active in NB +MYCN compared to GNB and blue 
means the reaction is stronger in GNB compared to NB +MYCN. Gray arrows represent reactions that are not significant (adjusted p-value > 0.05 ). 
The thickness of the arrow represents the relative log2 fold-change. The subplots show A) values from MW (RAS values), B) MW1

 (RAS values adjusted 
by TP), C) MW2

 (RAS adjusted by the recursive TP), and D) MW3
 (RAS adjusted by TP of paths)
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dataset, 1) NB +MYCN vs. GNB (Fig. 4), 2) NB +MYCN 
vs. NB -MYCN (Fig.  5), and 3) NB -MYCN vs. GNB 
(Fig.  S2). A similar comparison was performed on the 
GN/NB dataset and can be found in Fig.  S3. Log2 fold-
changes and RAS values for all comparisons are provided 
in Additional file 4.

Figure 4 illustrates the first comparison (NB +MYCN 
vs. GNB). A, B, C, and D represent the four matrices. 
The figure is reduced to the reactions relevant to gan-
glioside biosynthesis. The absolute values of the respec-
tive comparison group and the log2 fold-change are 
shown on the left. The coloring of the log2 fold-change 
dots reflects the negative decimal-logarithmic p-value. 

Fig. 5 Comparison of RAS-adjusted methods on the GSL pathway between NB -MYCN and NB +MYCN. Left dot plots illustrate the adjusted RAS 
values of NB -MYCN (NB) and NB +MYCN (NB_MYCN), as well as the log2 fold-change between the two groups. The whiskers indicate the standard 
deviation. The color intensity of log2 fold-change points indicates the negative decimal logarithm of the adjusted p-values. On the right, 
the subgraph containing the GSL pathway is visualized. Nodes represent the gangliosides and edges are the metabolic reactions (arrows). The arrow 
color describes the log2 fold-change direction, where red means that the reaction is more active in NB +MYCN compared to NB -MYCN and blue 
means the reaction is stronger in NB -MYCN compared to NB +MYCN. Gray arrows represent reactions that are not significant (adjusted p-value 
> 0.05 ). The thickness of the arrow represents the relative log2 fold-change. The subplots show A) values from MW (RAS values), B) MW1

 (RAS values 
adjusted by TP), C) MW2

 (RAS adjusted by the recursive TP), and D) MW3
 (RAS adjusted by TP of paths)
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On the right side, the ganglioside pathway as part of 
the GSL metabolic graph is shown. Non-significant 
reactions (with an adjusted p-value > 0.05 ) are grayed. 
Reactions that are more active in NB +MYCN are red 
and those that are more active in GNB are blue. The 
width of the arrows indicates the relative log2 fold-
change. As expected, in Fig.  4A the log2 fold-changes 
as well as the absolute values are the same for reac-
tions with the same enzymes. One can only see the ten-
dency that GNBs tend to form complex gangliosides. 
While this tendency changes and becomes more fine-
grained when looking at the adjusted RAS values. Over 
the plots of Fig. 4 that show adjusted RAS (Fig. 4B, C, 
and  D), the reaction R05940 (from GM3 to GD2, 
involving ST8SIA1) remains significant and indicates 
a higher activity in NB +MYCN. The reaction R05937 
(from lactosylceramide to GM3, involving ST3GAL5) is 
also significant and higher in NB +MYCN but indicates 
a smaller log2 fold change and a larger p-value. Another 
notable reaction that is significantly higher in NB 
+MYCN and shows a big fold-change, is R05971 (from 
lactosylceramide to Lc3Cer, involving B3GNT5) sug-
gesting a tendency of NB +MYCN to enter the lacto- 
and neolacto series. Also as expected, in Fig.  4B only 
the first reaction values of the four series are changed. 
Figure  4D indicates that the reaction from GM1b to 
GD1alpha of the 0-series is significantly more active in 
NB +MYCN.

Overall, the scores between NB +MYCN and GNB are 
not highly differentially expressed and relatively similar. 
Only few reactions differ more than 10% between the two 
entities (not shown in the figure), indicating fine-grained 
genomic changes that result in relatively small log2 
fold-changes. In summary, depending on the adjusted 
method, different ganglioside series are predicted to be 
active in NB +MYCN and GNB. Particularly, the adjust-
ment methods that discriminate all reactions between 
the four series (Fig. 4C and D) suggest the a-series to be 
more active in GNB, while the higher activity of the reac-
tions R05937 & R05940 in NB +MYCN hints to an accu-
mulation of gangliosides of the b-, or c- series.

Similar results can be observed in the comparison 
between NB and GN (Fig. S3). Although more reactions 
are significant due to the low sample number, there seems 
to be a similar tendency of GN to metabolize the simpler 
gangliosides to more complex ones, because the reac-
tions R05941 & R05948 show a larger log2 fold-change 
compared to NB (e.g. Fig. S3B). Reaction R05940 is also 
similar to the above comparison of GNB and NB hinting 
towards a higher activity of the b-series. However, there 
are also differences, so the large fold-change values of 
reactions R05938 and R05947 can be interpreted as an 
increased activity of the 0- and c-series in NB.

In contrast to the previous comparison, the differential 
reaction activity between NB -MYCN and NB +MYCN 
is overall smaller, since it is the same tumor entity. Nota-
bly, the small differences are also reflected in the fact 
that the changes between the adjustments are more sub-
tle. In all four subfigures of Fig. 5, there is a trend for the 
upstream reaction responsible for the more complex 
gangliosides to have slightly higher median activity in 
NB -MYCN compared to samples with MYCN amplifi-
cation. This would indicate that MYCN amplified sam-
ples tend to have a higher GD2 concentration, as GD2 is 
further metabolized in -MYCN samples. The patterns in 
Fig. 5B, C, and D indicate that reaction R05971, in which 
lactosylceramide is metabolized to GM3, is significantly 
more active in MYCN-amplified NBs. The three reac-
tions R05957, R05949, and R05942, which show particu-
larly high absolute adjusted RAS values in Fig. 5A and B, 
are reduced by the two alternative adjustment methods 
and brought to a similar activity level of other reactions. 
Whereas the absolute RAS values of reaction R05959 
remain constantly high across the four subfigures. Simi-
larly to the previous comparison, the reaction R05971 
indicates a large positive fold-change and is highly signifi-
cant. Again, this could mean a stronger tendency of NB 
+MYCN to enter the lacto- and neolacto series. Overall, 
the scores between NB +MYCN and NB -MYCN are not 
highly differentially expressed and are very similar, result-
ing in a relatively small log2 fold-change range. These 
results suggest that simple gangliosides may accumulate 
in samples with a MYCN amplification.

The metabolic graph used in our analysis results from 
the integration of four KEGG pathways. We examined 
whether there is an NT type-specific difference in the 
activity of the individual pathways of the graph. The aver-
age activity of the RAS was calculated as the sum of all 
reactions involved in the respective pathway. As shown 
in Fig.  S4, there are no major differences in the overall 
activity of each pathway between NB & GN in the respec-
tive dataset, and NB -MYCN, NB +MYCN, and GNB of 
the TARGET GNB/NB dataset. In both comparisons, the 
sphingolipid metabolism pathway in NB & NB +MYCN 
tends to be less active than in GN and GNB. This can be 
explained by strong activity differences of sulfate and sul-
fatide metabolic reactions.

Correlation analysis of GD2 relevant genes and MYCN
The previous results suggest that the expression of gan-
gliosides in NT changes depending on the subtype (NB, 
GNB) and the MYCN amplification status. This may 
affect the expression of clinically relevant gangliosides 
such as GD2. Therefore, we further analyzed the expres-
sion of genes required for GD2 synthesis and MYCN in 
the GN/NB and TARGET NB/GNB datasets.
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Our analysis reveals that the biological samples of the 
GN/NB dataset exhibited a clustering pattern that was 
highly dependent on the tumor entity, as determined by 
hierarchical clustering (Fig. 6A). In GN, B3GALT4 exhib-
ited notably high expression levels, while ST8SIA1 dis-
played relatively lower expression levels when compared 
to NB supporting our previous finding suggesting the 
expression of the a-series and of complex gangliosides 
in more differentiated tumors (Fig.  S3) Moreover, we 
observed a strong negative correlation between the gene 

expression of MYCN and B3GALT4 (r = -0.92) (Fig. 6B), 
as well as a strong positive correlation between MYCN 
and ST8SIA1 (r = 0.89) (Fig. 6C). Interestingly, the gene 
B4GALNT1, which is associated with the ganglioside 
pathway and is involved in the biosynthesis of GD2, did 
not exhibit a high correlation with MYCN (r = 0.26) 
(Fig.  6D). GNs show the lowest expression of MYCN 
and the highest expression of B3GALT4 suggesting an 
involvement of MYCN in the further metabolization of 
GD2 to GD1b, as expected in more differentiated tumors.

Fig. 6 A Heatmap illustrating the sample-to-sample distances of variance stabilized RNA-seq data (GN/NB dataset); GN (n = 6), and NB (n = 15); 
Intensity of the blue color indicates high and low similarity between samples. B Gene expression values of MYCN vs. B3GALT4. C Gene expression 
values of MYCN vs. ST8SIA1. D Gene expression values of MYCN vs. B4GALNT1. Red and blue dots indicate NB and GN samples, respectively
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In contrast, the TARGET GNB/NB dataset does not 
show a clear clustering of samples based on the tumor 
entity or the MYCN amplification status in the over-
all distance matrix (Fig.  7A). Nevertheless, the MYCN 
status seems to cluster better than the tumor entity. 

We assessed the Pearson correlation between MYCN 
expression and the three genes of the ganglioside 
metabolism related to GD2 biosynthesis within each of 
the NT groups (NB +MYCN, NB -MYCN, and GNB) 
and across different combinations of these groups to 

Fig. 7 A Heatmap illustrating the sample-to-sample distances of variance stabilized RNA-seq data (TARGET NB/GNB) (n = 154); blue annotation = 
GNB (n = 25), and red annotation = NB (n = 129); yellow annotation = +MYCN (n = 31), orange annotation = -MYCN (n = 123); Intensity of the blue 
color indicate high and low similarity between samples. B Gene expression values of MYCN vs. B3GALT4, ST8SIA1, and B4GALNT1. Red and blue data 
points indicate NB and GNB samples respectively. Round-shaped data points symbolize +MYCN samples and triangle-shaped ones show -MYCN 
samples

Table 1 Pearson correlation coefficient between expression values of GD2-related genes and MYCN for different sample subsets
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identify co-expression or co-regulation patterns, as well 
as to compare gene relationships between the subtypes 
(Table 1). The correlation coefficient r shows strong nega-
tive values between MYCN and B3GALT4 within MYCN 
amplified NB samples, GNB, their combination, as well as 
across all samples. Between MYCN and ST8SIA1 a strong 
positive correlation exists only within GNB and in com-
bination with NB +MYCN & GNB. Although GNB sam-
ples have a strong positive correlation between MYCN 
and B4GALNT, the other NT subtypes and combinations 
of subtypes do not indicate a co-expression pattern. The 
visualization of the three GD2-related genes vs. MYCN 
can be seen in Fig. 7B.

Taken together, these data support the role of MYCN 
in the differentiation of NT tumors [55] by regulating the 
expression of the B3GALT4 gene, which is required for 
the synthesis of complex gangliosides.

Unsupervised data exploration of GN/NB dataset indicates 
distinct subgroups in NB based on adjusted RAS values
Using an unsupervised learning approach, our goal was 
to show that by adjusting the RAS values of the GSL 
metabolism and differentiating the ganglioside series, the 
identification of novel subgroups would potentially be 
possible. Therefore, we first examined the GN/NB data-
set with UMAP and performed HDBSCAN clustering on 
the UMAP coordinates to determine visually appropri-
ate parameters. To estimate the stability of the identified 
clusters in dependence of the adjustment method, we cal-
culated UMAPs and HDBSCAN clustering on 1000 itera-
tions and summed the x- and y-coordinates per sample. 
The results were visualized as line plots per adjustment 
method in Fig. 8.

In Fig. 8A, it can be seen that the NT types based on 
RAS form two clusters over all iterations. By adjusting 
the RAS values with the TP, these two NT type based 
clusters can be further observed (Fig.  8B). By applying 
the third adjustment method based on TP along defined 
paths, two further clusters become apparent within the 
NB type (Fig. 8C). In this case, the number of variables 
for the UMAP calculation are reduced because reac-
tions outside of possible paths are removed. As the TP 
differs significantly in dependence of the path length, 
the TP matrix was scaled to make the scores homosce-
dastic for the UMAP. The adjustment method based on 
the recursive TP identifies most of the time three clus-
ters but shows a weaker cluster stability, as more outli-
ers are found (HDBSCAN annotates outlier samples 
as a pseudo-cluster 0) and more samples are switching 
between the clusters (Fig. 8D).

As additional diagnostic metrics for the clustering per-
formance, the C-index, the Calinski-Harabasz index, and 
the silhouette score were computed across the iterations 

(Fig.  S9). The C-index in both datasets based on the 
adjusted/non-adjusted RAS values is in the low range, 
indicating coherent and well-separated clusters. Due 
to the high homogeneity of the NB/GNB dataset, the 
C-index is slightly higher compared to the GN/NB data-
set. The clear separation in the GN/NB dataset is also 
evident in the high values of the silhouette score. Inter-
estingly, the RAS adjusted by the recursive paths in the 
NB/GNB dataset leads to a clear formation of two widely 
separated clusters. The higher values of the Calinski-Har-
abasz index and the silhouette score support this obser-
vation. In summary, although the scatter between the 
iterations is higher in the more homogeneous NB/GNB 
dataset than in the NB/GN dataset, it can be said that the 
results of the iterations are consistent, except for a few 
outliers.

Using a UMAP result calculated on the path-based TP-
adjusted RAS matrix as an example (Fig.  9A), we dem-
onstrate the further procedure to identify characteristic 
reactions for the respective clusters applying t-tests. For 
each cluster, we have chosen one exemplary reaction 
with the highest p-value for visualization. In Fig. 9C the 
reaction R11321, which takes part in the globo series of 
the GSL biosynthesis pathway and is represented by the 
gene B3GALNT1, shows a significant p-value of 0.0001 
and FDR of 0.01 for cluster 1. The reaction R06038, which 
participates in the lacto- and neolacto series of the GSL 
biosynthesis pathway and is represented by the fucosyl-
transferase (FUT) genes, shows a significant p-value of 
0.0001 and FDR of 0.003 for cluster 2 (Fig.  9D). Lastly, 
reaction R12960 characterizes the third cluster (GN 
samples), which is responsible for the metabolism of lac-
tosylceramide sulfate by galactosylceramide sulfotrans-
ferase with a p-value smaller 0.0001 and FDR < 0.0001 ) 
(Fig. 9E). In accord to these results, the presence of sulfa-
tides is expected to be high in Schwannian stroma, which 
is the main component of GN [19].

In addition, we checked the correlation between 
the identified clusters and the MYCN expression. As 
shown in Fig.  9B, there is indeed a difference between 
the MYCN expression of NBs from clusters 1 and 2. As 
already shown in Fig. 6, one can see the clear difference 
in MYCN expression between NB (clusters 1 and 2) and 
GN (cluster 3).

In summary, these results suggest that unsuper-
vised data exploration techniques can be applied to the 
adjusted weighting schemes and yield additional findings 
on subtypes and their specific characteristics. Our analy-
sis suggests the presence of two NB subclusters with an 
altered sphingolipid composition. One of the subclusters 
is characterized by, among other factors, increased activ-
ity of the FUT enzymes and a correlation with the MYCN 
gene expression.



Page 15 of 24Ustjanzew et al. Cancer & Metabolism           (2024) 12:29  

Unsupervised learning of TARGET GNB/NB samples 
indicates a Fucosyltransferase driven subcluster
We have also applied the unsupervised procedure 
described above to the TARGET GNB/NB dataset. We 
computed the UMAP on the unadjusted RAS values 
for the following analysis (Fig.  10A). Cluster 1 shows a 

high similarity of samples and was selected for further 
investigation.

The identification of the marker reactions showed that 
in cluster 1, among others, the reactions involving genes 
of fucosyltransferases (FUT3, FUT4, FUT5, FUT6, and 
FUT9), e.g. reaction R06025 of the lacto- and neolacto 

Fig. 8 Stability assessment of the unsupervised clustering of the adjusted RAS matrices. UMAP dimensionality reduction with HDBSCAN clustering 
was performed on 21 samples of the GN/NB dataset over 1000 iterations. UMAP’s parameter n_neighbor attribute was set to 3. The subplots show 
50 random selected iterations of UMAP followed by HDBSCAN clustering (x-axis) for A) MW (RAS values), B) MW1

 (RAS values adjusted by TP), C) MW2
 

(RAS adjusted by the path-specific TP), and D) MW3
 (RAS adjusted by the recursive TP). The color indicates the cluster of the respective sample. GN 

is represented through a circle, while NBs are rectangular. The same samples are connected with lines between the iterations, indicating cluster 
stability. The y-axis represents the sum of x- and y-coordinates of the UMAP per sample
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series, are significantly more active with p < 0.0001 
and FDR < 0.001 than in the samples of the remain-
ing clusters (Fig. 10B). Since the analysis was performed 
on unadjusted RAS values, all reactions involving all 
named FUTs have the same p-values and FDRs. To fur-
ther investigate the transcriptional deregulation of 

cluster 1, differential gene expression analysis was per-
formed between the cluster 1 samples against all remain-
ing samples (Fig. 10C). This identified 91 downregulated 
and 498 upregulated genes that had an adjusted p-value 
< 0.05 and a log2 fold-change < −0.6 or > 0.6 , which 
corresponds to a fold-change of 1.5 in gene expression 

Fig. 9 Unsupervised clustering and identification of marker reactions. A The HDBSCAN clustering of the UMAP coordinates based on the MW3
 (RAS 

values adjusted by TP along paths) shows a clear separation between GN and NB, as well as a separation of NB samples into two distinct groups. 
Round symbols represent GN and triangles are NB samples. B Box plot of normalized MYCN expression grouped by identified clusters. With a t-test 
statistic we demonstrate characteristic reactions per cluster. As an example, the box plot in C) shows the adjustment RAS values of reaction R11321 
characteristically for cluster 1, D) the reaction R06038 characteristically for cluster 2, and E) the reaction R12960 characteristically for cluster 3. Boxes 
range from first to third quantile, the middle line indicates the median, the whiskers show the highest and lowest values no further than 1.5 ∗ IQR 
from the hinge. Black dots represent the samples
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(Additional file 3). Additionally, a heatmap of the down-
regulated genes can be found in Fig.  S6. Among the 
upregulated genes, the FUT3 and FUT6 genes are found, 
as expected. Among the downregulated genes, genes 
of the GSL pathway are also present, namely ITGB8 
and ST6GALNAC5. In Fig.  S5 we further investiated 
the association of MYCN expression across the UMAP 

representation. The specific cluster under investiga-
tion comprises only a single sample exhibiting a MYCN 
expression exceeding 4. We could not detect any discern-
ible correlation in MYCN expression patterns within 
the UMAP. This observation suggests that the impact of 
MYCN may not be sufficiently robust to manifest dis-
cernibly in the GSL profile.

Fig. 10 Unsupervised clustering and identification of marker reactions. A One representative UMAP representation out of the 1000 computed 
iterations, colored by the HDBSCAN clustering (in accord with the HDBSCAN method samples of cluster 0 are identified as outliers). Circles 
represent GNB and triangles are NB samples. The red selection indicates samples of cluster 1. B The same UMAP representation as in B) colored 
by the computed values for the R06025 reaction, which was identified as highly characteristically for cluster 1. C Volcano plot of differentially 
expressed genes between samples of cluster 1 and all other samples. Red dots denote upregulated genes in samples of cluster 1 compared 
to samples of all other clusters. Blue dots show downregulated genes in cluster 1. Not significant expressed genes are black. The red lines indicate 
the p-value threshold of 0.05, and log2 fold change thresholds of 0.6 and -0.6. The orange line indicates the adjusted p-value threshold of 0.05. The 
genes FUT3/6, ITGB8, and ST6GALNAC5 were additionally labeled
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The differentially expressed genes were used for GO 
term enrichment analysis in the next step. In total 92 
enriched GO terms with a p-value (elim) < 0.05 were 
identified based on the downregulated genes and 629 
enriched GO terms with a p-value (elim) < 0.05 were 
identified based on the upregulated genes. The downreg-
ulated genes indicated decreased activity of histone H3 

deacetylation, myelin assembly, lower regulation of syn-
aptic transmission, and glial cell development (Fig. 11A). 
Furthermore, the GO terms generation of neurons, neu-
ron differentiation, brain development, positive regula-
tion of lipid metabolic process, and lipid homeostasis are 
significantly enriched, yet the gene ratio between the dif-
ferential genes and the term annotated to the GO term 

Fig. 11 GO term enrichment analysis of up- and downregulated genes. A Dot plot of the GO enrichment analysis results, highlighting GO 
pathways enriched in the downregulated genes. Only GO terms with a p-value < 0.05 and more than one significant gene are shown. The color 
scale represents the negative logarithm of the p-value, while the dot size indicates the number of significant genes identified in each GO term. 
B Dot plot of GO pathways enriched in the upregulated genes. Due to the identification of over 500 identified GO pathways with a p-value < 0.05 
and and more than one significant gene, the subset shown includes only those GO terms with a GeneRatio > 0.2 . Additionally, several lipid-related 
pathways are highlighted as examples. The color scale denotes the negative logarithm of the p-value, and the dot size represents the number 
of significant genes associated with each GO term. The GeneRatio is calculated as the number of significant genes found in a given GO term divided 
by the total number of genes annotated to that GO term



Page 19 of 24Ustjanzew et al. Cancer & Metabolism           (2024) 12:29  

is lower (Additional file  3). In Fig.  S7 we further inves-
tigated the enrichment map of the GO enriched terms 
from downregulated genes in cluster 1 and identified 
six communities. Two major communities indicate an 
association with 1) neuron and nervous system related 
terms (green), and 2) lipid-related and regulatory terms. 
Among GO terms enriched within upregulated genes, we 
detected the following pathways standing out in particu-
lar with a high gene ratio ( > 0.2 ) and a particularly low 
p-value: histidine metabolic process, regulation of lipo-
protein lipase activity, negative regulation of cholesterol 
transport, reverse cholesterol transport, epoxygenase 
P450 pathway, intestinal lipid absorption, and triglyceride 
homeostasis (Fig. 11B).

Taken together, we investigated the GSL metabolism 
patterns with a particular focus on the ganglioside metab-
olism pathway in NB, GNB, and GN using the introduced 
adjusted RAS values. Our analysis revealed subtle but 
significant differences in gene expression-driven reaction 
activities. Notably, comparisons between MYCN-ampli-
fied NB and GNB suggested fine-grained transcriptomic 
changes, indicating distinct ganglioside series activities. 
Correlation analyses underscored the influence of tumor 
entity and MYCN amplification on ganglioside expres-
sion and suggested an involvement of MYCN in the 
accumulation of GD2. Unsupervised techniques, such as 
UMAP and HDBSCAN clustering, showed an association 
between the clusters with the tumor type in case of the 
NB/GN dataset and revealed distinct subgroups within 
NB in both datasets. In particular, a FUT-driven subclus-
ter within NB showed potential associations with GO 
terms related to neoron and nervous system, lipids, and 
regulatory mechanisms. The comparison between the 
RAS adjustment methods led to slightly different results 
when investigating the reaction activities of the ganglio-
side series and different UMAP embeddings during the 
unsupervised analysis, making it difficult to assess which 
method is more reliable. Nevertheless, the approach 
enabled us to better quantitatively discriminate the gan-
glioside series and in this context showed improvements 
compared to unchanged RAS values.

Discussion
In this study, we focused on the specific issue of low sub-
strate specificity among ganglioside metabolism enzymes 
and the resulting difficulty to obtain conclusions about 
the activity within the four series of the ganglioside 
metabolism when utilizing only transcriptome data. To 
overcome this challenge, we propose a straightforward 
approach that integrates network topology information 
and transcriptome data. We constructed a directed graph 
based on four GSL related metabolic pathways from the 
KEGG database. Transcriptome datasets of three NT 

entities were aggregated to RAS values for each sam-
ple and used to weighting the graph edges. Three dif-
ferent adjustment methods based on the TP between 
nodes were applied to the RAS weighing and compared 
among each other. This integrated methodology provides 
a solution for unraveling the complexities of ganglioside 
pathways.

Even though the study of the effect of complex meta-
bolic processes plays an important role in many fields, 
such as signal transduction, biomarkers, and cancer phys-
iology, it is still difficult to infer metabolic activity from 
indirect measurements, such as transcriptome data [56]. 
Many of the methods developed for this purpose can be 
divided into at least two fields, constraint-based meth-
ods (e.g., flux-based analysis) [56, 57] and graph analy-
sis, also known as network science techniques [58–60]. 
In the latter case, graph construction can take different 
forms, such as metabolite-centric, bipartite, or reaction-
centric graphs [61]. Both fields mostly use genome-scale 
metabolic models (GEMs), which are mathematical rep-
resentations of the current state of knowledge on organ-, 
species-, or condition-specific metabolic properties. 
Constrain-based approaches, while being powerful 
tools, they require reaction rates, assume a steady-state 
condition and one or more suitable optimization objec-
tives, which are often elusive in cancer types [32, 62, 63]. 
Therefore, we have intentionally refrained from using 
whole GEM and constraint-based methods in order to 
reduce the complexity of the analysis and focus only on 
the GSL metabolism. Acknowledging the multifaceted 
nature of GSL metabolism regulation, encompassing epi-
genetic, transcriptional, and post-translational control 
[64–67], we intentionally limit our model to gene expres-
sion data, as this simplification enables a focused explo-
ration within the defined scope of our study and allows 
the usage of a widely available data type.

We acknowledge that a limitation of our analysis 
method is the involvement of many considered enzymes 
in reactions outside of GSL metabolism. This could 
obscure significant differences between the various sub-
populations in our dataset. Currently, the state of the art 
in finding subgroups are simple RNA-Seq workflows, 
often in combination with other molecular data, that do 
not account for single reactions at all. Our primary aim 
was to explore the GSL metabolism and identify meta-
bolic differences between several groups, which is not 
efficiently possible with the aforementioned workflows. 
In this context, we focused on neuroblastic tumor entities 
due to the existing literature on the deregulation of GSL 
metabolism. Given that the primary enzymes involved in 
ganglioside synthesis are specific to their substrates [45], 
we opted to simplify our approach by avoiding the use of 
a GEM. Regarding the technical application of the three 



Page 20 of 24Ustjanzew et al. Cancer & Metabolism           (2024) 12:29 

RAS weighting methods on a GEM, we conclude that the 
simple TP adjustment can be applied to a whole-genome 
network, as it depends solely on local network topology 
and is unaffected by enzyme involvement in different 
pathways. Notably, our results from the GSL-subnetwork 
would remain consistent even if applied to the entire net-
work. The recursive weighting method is also applicable 
to the whole metabolic graph and would not alter the 
results. In contrast, the path-based adjustment method 
relies heavily on the central node from which simple 
paths are calculated. Applying it to the whole network 
is challenging due to the absence of a central metabolic 
node. A potential solution could be to select a central 
node per pathway and prevent overlapping paths, but this 
approach would require further testing.

It can be observed that both adjustment methods 
(path-based and recursive weighting) have introduced 
differences in the weighting of the ganglioside series com-
pared to the unadjusted RAS weighting. Even the simple 
addition of the TP with the RAS values does not pro-
vide complete differentiation. The interpretation of the 
results in relation to the unsupervised analysis is difficult, 
as the different weightings lead to different clusters. In 
the case of recursive adjustment, even the association of 
the clusters with the tumor entities dissolves and shows 
more outlier samples. However, this may also be due to 
the clustering parameters. In the comparison between 
two specific conditions, the differences introduced 
between the ganglioside series are of a subtle nature. In 
any case, we understand that further work is needed to 
evaluate the adjustment methods on other tissue and 
tumor entities, that may indicate stronger differences in 
the ganglioside patterns and to validate the results in the 
context of laboratory measurements, e.g. immunohisto-
chemistry or mass spectrometry. In this first approach, 
we wanted to focus on well-studied neuroblastic tumor 
entities that have clinical relevance in terms of ganglio-
side metabolism.

Using this approach, we were able to predict an activa-
tion of the a-series in GNB vs. NB. This is in accord with 
a previous analysis showing that GNB expresses GM1a 
and GD1a [15]. NB samples were shown to express com-
plex gangliosides of the b-series (GD1b and GT1b), while 
the presence of both the a- and b-series was observed 
particularly in GNB. This could be regulated by the 
ST8SIA1 gene product (R05940) which is indeed more 
expressed in NB according to our result and underscores 
the hypothesis of N. W. Mabe et al. that ST8SIA1 acts as a 
bottleneck on the GD2-production [26]. A lower expres-
sion of ST8SIA1 could be a signal to the cells to enter 
the a-series. The co-expression of complex gangliosides 
of the a- and b-series is typical of mature neuronal tis-
sues, which express very low amount of GD2, and the 

significantly higher expression of B3GALT4 and lower 
expression of ST8SIA1 in GN support our hypothesis 
that the combination of different genes is required to pre-
dict the final composition of NT. Importantly, reduced 
expression of ST8SIA1 could change the composition of 
gangliosides towards the a-series with reduction in GD2 
expression and indeed downregulation of ST8SIA1 in 
NBL confers resistance to the anti-GD2 antibody [26, 68].

Our data suggest also that MYCN amplified tumors, 
known for their unfavorable prognosis, accumulate less 
complex gangliosides, driven by the activities of reac-
tions R05956, R05941, R05948, and R05953 (all attributed 
to the gene B3GALT4). This aligns with previous data 
showing the absence of complex gangliosides in NB cases 
featuring MYCN amplification [15]. Notably, the simple 
ganglioside GD2 is particularly abundant in these tumors 
[12]. Loss of complex gangliosides has been linked to a 
poor prognosis in NB [11, 69]. As MYCN amplification 
is also associated with the differentiation of NT tumors, 
more complex gangliosides can be observed in GN and 
GNB, which are more differentiated tumor entities. This 
highlights the need for further investigations to unravel 
the relationship between MYCN amplification, regula-
tion of differentiation, the depletion of complex ganglio-
sides, and the concurrent accumulation of GD2.

GSL profiles are important not only in NT. GSL dereg-
ulation has been described in different tumor entities, 
including hard to treat tumors such as diffuse midline 
glioma, ependymoma [70], and triple negative breast 
cancer [71]. Deregulation of GSL affects the biology of 
the tumors. For example, expression of GD1a facilitates 
the adhesion of tumor cells to the endothelium and high 
GD2 expression has been described in metastasis of dif-
ferent tumor types [72, 73]. GSL can be exploited for 
therapy and classification. Tumors with deregulated gan-
gliosides synthesis can be responsive to treatment with 
UGCG inhibitors, such miglustat and eliglustat, which 
are already used in the clinic for the treatment of children 
with Gaucher disease [15, 70, 74]. Tumors with expres-
sion of GD2 can be targeted with monoclonal antibod-
ies [75] or CAR-T cells [76]. Finally, GSL profiles allow 
identifying subgroups in heterogeneous tumor entities 
such as medulloblastoma [15]. Therefore, the approach 
we propose may facilitate in the future the identification 
of therapeutic or diagnostic relevant GSL profiles across 
tumor entities.

Current prognostic markers are based on genomic 
alterations, particularly MYCN amplification and ALK 
alterations in NB. Ganglioside profiles have not been 
integrated into a clinical routine so far, also because of 
the technical requirements necessary for their quantifi-
cation. The use of RNA-seq data to predict ganglioside 
profiles may help in the future to improve the prognosis 
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and possibly the therapy of NT patients. Current bio-
markers are indeed not sufficient to identify all patients 
at risk. For example, MYCN amplification is associated 
with a poor prognosis but children with tumors without 
MYCN amplification can also have a poor prognosis. GN 
is generally considered a benign tumor and therefore can 
be treated by surgery alone. However, ganglioneuroblas-
toma intermixed can have aggressive behavior and can 
need multimodal therapy. Thus, ganglioside profiling 
with our method may help in the future for better risk 
stratification of NT tumors and could help to identify 
subgroups with specific biological features. For instance, 
we were able to define a subcluster involving genes of 
fucosyltransferases. FUT genes are required for the syn-
thesis of Sialyl Lewis x (SSEA1; CD15) which belongs to 
the neolacto series. SSEA1 is expressed in neuronal stem 
cells and could define a subgroup with higher potential 
for proliferation and self-renewal as already shown in 
other tumor entities [77]. Further, Cuello et al. identified 
an overexpression of FUT genes in MYCN amplified cell 
lines and patient tumors with aberrant glycosylation and 
agressive behaviour [78].

Conclusions
In this paper, we described a methodological approach 
introducing three TP based adjustments for a RAS 
weighted metabolic graph with nodes as metabolites and 
edges representing metabolic reactions. We illustrated 
how these weighting schemes can be applied to a condi-
tional comparison and an unsupervised data exploration. 
Furthermore, we tested our approach on three NT enti-
ties with the focus on the GSL metabolism and particu-
larly the ganglioside biosynthesis pathway.

Our results suggest that indeed the weighting schemes 
make the individual series of ganglioside metabolism 
distinguishable, allowing a differentiated analysis of the 
GSL profile in NT entities. We showed that the results 
have a biological rationale and are largely consistent with 
published data on the ganglioside composition of NT. 
Our method may be helpful in the comparison of GSL 
deregulation between two specific sample groups, as well 
as for the identification of previously unknown cancer 
subgroups that exhibit distinguishability based on their 
sphingolipid profile. Our approach can also be used for 
other metabolic pathways involving enzymes that have 
low specificity to the substrate and participate in several 
metabolic reactions unlocking the potential to leverage 
widely available transcriptome datasets to obtain deeper 
insights in such clinically relevant scenarios.
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