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Abstract
Background Despite technological advances in radiotherapy, cancer cells at the tumor margin and in diffusive 
infiltrates can receive subcytotoxic doses of photons. Even if only a minority of cancer cells are concerned, phenotypic 
consequences could be important considering that mitochondrial DNA (mtDNA) is a primary target of radiation and 
that damage to mtDNA can persist. In turn, mitochondrial dysfunction associated with enhanced mitochondrial ROS 
(mtROS) production could promote cancer cell migration out of the irradiation field in a natural attempt to escape 
therapy. In this study, using MCF7 and MDA-MB-231 human breast cancer cells as models, we aimed to elucidate 
the molecular mechanisms supporting a mitochondrial contribution to cancer cell migration induced by subclinical 
doses of irradiation (< 2 Gy).

Methods Mitochondrial dysfunction was tested using mtDNA multiplex PCR, oximetry, and ROS-sensitive fluorescent 
reporters. Migration was tested in transwells 48 h after irradiation in the presence or absence of inhibitors targeting 
specific ROS or downstream effectors. Among tested inhibitors, we designed a mitochondria-targeted version of 
human catalase (mtCAT) to selectively inactivate mitochondrial H2O2.

Results Photon irradiation at subclinical doses (0.5 Gy for MCF7 and 0.125 Gy for MDA-MB-231 cells) sequentially 
affected mtDNA levels and/or integrity, increased mtROS production, increased MAP2K1/MEK1 gene expression, 
activated ROS-sensitive transcription factors NF-κB and AP1 and stimulated breast cancer cell migration. Targeting 
mtROS pharmacologically by MitoQ or genetically by mtCAT expression mitigated migration induced by a subclinical 
dose of irradiation.

Conclusion Subclinical doses of photon irradiation promote human breast cancer migration, which can be 
countered by selectively targeting mtROS.
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Introduction
X-ray radiotherapy with or without (neo)adjuvant hor-
monal therapy and/or chemotherapy is a gold stan-
dard treatment option for women with breast cancer. 
However, treatment efficacy is limited by intrinsic 
and acquired radioresistance, an escape mechanism 
embroiled in intensive research [1–6]. A less studied 
escape mechanism is the potential for radiotherapy to 
stimulate cancer cell migration based on a natural ten-
tative of cancer cells to leave the irradiation field. Mod-
ern advances in intensity-modulated radiotherapy [7] 
limit this possibility, as precise and accurate photon dose 
deposition can be achieved for most cancer cells within 
primary breast tumors. However, dose deposition is less 
accurate at the tumor margin and for cancer cells in dif-
fusive infiltrates [8]. This is inherent to limited imaging 
resolution especially under breathing movements, mak-
ing it difficult to precisely localize and target the tumor 
margin [9–11]. Peripheral cancer cells may thus receive 
subcytotoxic doses of photons, adapt, and escape.

To acquire migratory capacities is a first and key step 
towards exiting the irradiation field. While doses used for 
fractionated radiotherapy (1.8 to 2  Gy for conventional 
fractionation, 1.5 Gy bid for hypofractionation in inflam-
matory breast cancer, and ≥ 2.1  Gy for postoperative 
hypofractionation [12, 13]) are generally (but not always) 
detrimental to migration for radiosensitive cancer cells 
[14, 15], lower subcytotoxic doses can induce breast can-
cer cell proliferation [16], migration and invasion [17, 18]. 
With respect to breast cancer cell migration, the main 
mechanism identified to date is induction of an epithe-
lial-to-mesenchymal transition [17, 18], with N-cadherin, 
vimentin, focal adhesion kinase signaling and nuclear 
β-catenin contributing to the migratory phenotype [19].

In the present study, we tested the hypothesis that 
mitochondria within breast cancer cells are a promigra-
tory signaling hub activated by subclinical doses of ion-
izing radiation (defined here as < 2  Gy) based on two 
paradigms. The first is the increased vulnerability of 
mitochondrial DNA (mtDNA) to irradiation, due to 
the fact that mtDNA is principally composed of cod-
ing regions, is not protected by histones, and has lim-
ited repair capabilities compared to nuclear DNA [20]. 
Irradiation-induced mitochondrial dysfunction could 
thus persist and propagate until full mitochondrial turn-
over (fission, mitophagy, mitochondrial biogenesis and 
fusion) [21]. The second paradigm is that an increased 
subcytotoxic production of mitochondrial reactive oxy-
gen species (mtROS) is sufficient to trigger breast can-
cer cell migration [22, 23]. mtROS mainly originate from 
the mitochondrial electron transport chain (ETC), and 
either an increased or a decreased ETC activity following 
bottlenecking damage results in enhanced electron leak 
[22]. Leaking electrons create mtROS, which collectively 

promote cancer cell migration by activating redox-sensi-
tive effectors, including the transforming growth factor 
β (TGFβ) pathway [22]. Mitochondrial dysfunction can 
thus support sustained cancer cell migration, but whether 
subclinical doses of radiotherapy facilitate this event in 
breast cancer cells is currently unknown. We explored 
and validated this possibility in vitro using two different 
types of human breast cancer cells (luminal A and triple-
negative). We report that mtROS can be genetically and 
pharmacologically targeted to block the gain in migration 
induced by subclinical doses of radiation.

Methods
Cells and cell culture
MCF7 (catalog #HTB-22) and MDA-MB-231 (catalog 
#HTB-26) human breast cancer cells from the Ameri-
can Type Culture Collection were routinely cultured in 
DMEM-GlutaMAX medium (Gibco, catalog #61965-
026) containing 4.5  g/L D-glucose without pyruvate, 
supplemented with 10% FBS. Cultures were maintained 
at 37  °C in a 5% CO2 humidity-controlled incubator, 
with regular checks to verify the absence of mycoplasma 
(MycoAlert Plus, Lonza; catalog #LT07-710). Cell count-
ing was performed on a Spectramax i3x spectropho-
tometer equipped with a MiniMax imaging cytometer 
(Molecular Devices).

Drugs
Mitoquinone mesylate (MitoQ) was a kind gift of Michael 
P. Murphy (University of Cambridge, UK). IκB kinase 
(IKK) inhibitor BMS-345541 (MedChemExpress, catalog 
#HY-10,519) was used to repress nuclear factor-κB (NF-
κB) activity, and c-Jun inhibitor T-52241 (MedChemEx-
press, catalog #HY-12,270) to repress activating protein 
1 (AP1) activity. Unless stated otherwise, all other drugs 
were from Sigma-Aldrich.

Vectors and transfection
Cells were transfected 1 h before irradiation using lipo-
fectamine 3000 (Thermo Fisher, catalogue #L3000001) 
according to manufacturer’s protocol. For experiments 
targeting mitochondrial H2O2 (mtH2O2), we constructed 
a vector encoding a mitochondria-targeted version of 
human HA-tagged catalase (mtCAT) following the pro-
cedures detailed in Supplementary Methods. Control 
empty vector was pCMV3-C-HA (Sino Biological, cata-
log #CV013). Vectors reporting on the transcriptional 
activities of NF-κB and AP1/c-Jun were 4xNFkB Luc 
(Addgene, catalog #111,216) and 3xAP1pGL3 (Add-
gene, catalog #40,342), respectively. Negative control was 
pGL4-23-NegCtrl (Addgene, catalog #163,904). pTK-
Green Renilla (Thermo Fisher Scientific, catalog #16,154) 
was used to normalize for transfection efficiency. Assays 
were performed 24 h after transfection.
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Irradiation
Adherent cells in culture dishes were irradiated at a 
dose rate of 0.8  Gy/min using an IBL-637 137Cs photon 
irradiator (Gamma Service Medica). They were allowed 
to recover for 24  h before any other experimental 
intervention.

Migration and invasion
Migration and invasion were assayed in 24-well transwell 
plates with 8.0  μm pore size inserts (Corning, catalog 
#353,097) with 0.2% (MDA-MB-231) or 10% (MCF7) FBS 
as chemoattractant, as previously reported [24]. After 
24  h of migration or invasion in the presence of tested 
pharmacological agents, cells at the bottom of the insert 
were fixed with 4% paraformaldehyde (PFA) for 10 min, 
washed twice with PBS, and stained with 0.5% crystal 
violet for 2  h. Remaining cells at the top of the insert 
were removed with a cotton swab. Pictures were taken 
at 5x magnification on a Zeiss Axiovert S100 microscope 
and quantified using QuPath version 0.2.3 (University of 
Edinburgh). All results are expressed as % of the basal 
migration of untreated cells.

mtDNA quantification
The quantification of total and deleted mtDNA (com-
mon 4977  bp deletion) was performed using multiplex 
PCR on a ViiA 7 Real-Time PCR system (Applied Biosys-
tems), using a previously described protocol [25]. Briefly, 
primers encoding sequences from the minor arc (total 
mtDNA) and major arc (damaged mtDNA) of the mito-
chondrial genome were amplified and quantified with 
FAM and NED fluorescent probes, respectively. Data 
were normalized to nuclear DNA levels (nuclear gene 
β2M detected with the VIC probe).

Oximetry
Cellular oxygen consumption rates (OCRs) were deter-
mined using a Seahorse XFe96 bioenergetic analyzer 
(Agilent Technologies), according to manufacturer’s pro-
tocol. Briefly, 24 h after irradiation or sham, 10,000 MCF7 
or 5,000 MDA-MB-231 cells were seeded in their routine 
culture medium in XFe96 culture plates, treated phar-
macologically as indicated, and left to adhere for 24  h. 
Cells where then assayed in CO2-free DMEM containing 
10 mM glucose, 2 mM glutamine, 1.85 g/L NaCl, 3 mg/L 
phenol red, pH 7.4, using the XF cell MitoStress kit (Agi-
lent Technologies) in the presence of indicated pharma-
cological modulators. Mitochondrial OCR (mtOCR) was 
calculated as the difference between basal OCR and non-
mitochondrial OCR measured upon full ETC inhibition 
by 0.5 µM of Complex I inhibitor rotenone + 0.5 µM of 
Complex III inhibitor antimycin A.

Glucose and lactate measurements
Glucose uptake and lactate secretion rates were deter-
mined by measuring glucose and lactate concentrations 
in cell medium 48  h after treatment using a CMA600 
enzymatic analyzer (Aurora Borealis), as previously 
described [26].

ROS measurements
Twenty-four hours after irradiation 2 × 105 MCF7 or 105 
MDA-MB-231 cells were seeded in complete medium 
and allowed to adhere in black, clear-bottom 96-well 
plates (Greiner Bio One). Whole cell ROS levels were 
determined using dihydroethidium (DHE; Abcam, cata-
log #ab236206), mtROS using MitoSOX (Thermo Fisher 
Scientific, catalog #M36008) [27], and mitochondrial 
H2O2 using mitochondria peroxy yellow 1 (MitoPY1; Bio-
techne, catalog #4428) [28]. Fluorescence was measured 
on a Spectramax i3x spectrophotometer equipped with a 
MiniMax imaging cytometer. All data are expressed as % 
of unirradiated controls.

Generation of mitochondrial H2O2
To selectively generate H2O2 in mitochondria, cells 
were transfected with a mtHyPer-D-amino acid oxidase 
(DAAO) plasmid (Addgene, catalog #168,304) [29] using 
lipofectamine 3000. Within mitochondria, flavoenzyme 
DAAO generates H2O2 by catalyzing the conversion of 
exogenously supplied D-alanine, but not L-alanine, to 
pyruvate, and the fluorescent sensor HyPer selectively 
reports on mtH2O2 levels [30], which were measured on 
a Spectramax i3x spectrophotometer equipped with a 
MiniMax imaging cytometer.

Real-time quantitative PCR
Total mRNA was extracted and quantified as previ-
ously reported [23]. Primers were for MAP2K1 forward 
5’-GGG-ACC-AGC-TCT-GCG-GAG-A-3’; reward 
5’-GCC-CCC-AGC-TCA-CTG-ATC-TTC-T-3’, and 
for HPRT forward 5’-TGG-CGT-CGT-GA-TAG-TGA-
TG-3’ and reward R: 5’-CAC-CCT-TTC-CAA-ATC-
CTC-AG-3’). All data were normalized to HPRT gene 
expression.

Apoptosis detection
Apoptosis was detected using previously disclosed proto-
cols that are detailed in the Supplementary Methods.

Statistical analyses
All results are expressed as means ± standard error of 
the mean (SEM) for n independent observations. Error 
bars are sometimes smaller than symbols. Outliers were 
identified using Dixon’s Q test. Data were analyzed using 
GraphPad Prism 8.4.3. Student’s t test and one-way 
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ANOVA were used where appropriate. P < 0.05 was con-
sidered to be statistically significant.

Results
Irradiation at subclinical doses promotes human breast 
cancer cell migration and mtROS production
To test whether subclinical doses of irradiation could 
promote cancer cell migration, luminal A MCF7 and 
triple-negative MDA-MB-231 human breast cancer 

cells were irradiated at photon doses ranging from 0.125 
to 2  Gy (2  Gy being a reference clinical dose [12]) and 
assayed in transwells with FBS as chemoattractant. 
Peaks in migration were detected 48  h after 0.5  Gy for 
MCF7 (+ 42.6 ± 12.3%) and 48 h after 0.125 Gy for MDA-
MB-231 (+ 24.5 ± 13.7%) cells (Fig. 1a). These doses were 
subcytotoxic (Fig. 1b). They did not induce breast cancer 
cell invasion in transwells (Figure S1). Metabolically, pho-
ton irradiation dose-dependently increased the mtOCR 

Fig. 1 Subclinical doses of irradiation stimulate human breast cancer cell migration, alter respiration and trigger mtROS production. (A) Cancer cells were 
irradiated with increasing doses of photons. Their migratory capacities were assayed in transwells for a duration of 24 h starting 24 h after irradiation, 
with FBS as chemoattractant. MCF7 migration is shown on the left (n = 4) and MDA-MB-231 on the right graph (n = 8). (B) MCF7 (left graph, n = 10) and 
MDA-MB-231 (right graph, n = 10) cells were counted 48 h after irradiation with a single dose of 0.5 Gy and 0.125 Gy, respectively. (C) The mitochondrial 
oxygen consumption rate (mtOCR) of 10,000 MCF7 cell (left graph, n = 5) and 5,000 MDA-MBA-231 cells (right graph, n = 5) was measured on a Seahorse 
bioenergetic analyzer 48 h after increasing doses of irradiation. (D) Glucose consumption and lactate release rates were determined enzymatically 48 h 
after irradiation. The left graph shows the lactate production/glucose consumption ratio for MCF7 (n = 3) and the right graph for MDA-MB-231 (n = 3) 
cells. (E) Multiplex PCR was used to quantify total mtDNA and damaged mtDNA (common deletion) levels in MCF7 (n = 6) and MDA-MB-231 (n = 6) cells 
48 h after irradiation. (F) In MCF7 cells, mitochondrial ROS (mtROS) levels were measured using MitoSOX fluorescence 48 h after increasing doses of ir-
radiation (n = 3–10). (G) In MCF7 cells, mtROS levels were measured using MitoSOX fluorescence 48 h after irradiation (left graph, n = 10), mitochondrial 
H2O2 (mtH2O2) levels using MitoPY1 fluorescence (middle graph, n = 8), and whole cell ROS levels using dihydroethidium (DHE) fluorescence (right graph, 
n = 18). (H) As in (F) but using MDA-MB-231 cells (n = 8). (I) As in (G) but using MDA-MB-231 cells (left graph, n = 8; middle graph, n = 9; right graph, n = 18). 
All data are shown as means ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.005, ns P > 0.05; by one-way ANOVA with Dunnett post-hoc test (A, C, F, H) or by Student’s 
t test (B, D, E, G, I)
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of MCF7 cells, which peaked 48 h after 0.5 Gy (Fig. 1c). 
Conversely, MDA-MB-231 cell mtOCR was significantly 
decreased 48  h after 0.125  Gy. The glycolytic rate (lac-
tate/glucose ratio) of the two cell lines was unchanged 
(Fig. 1d). The increased mtOCR of MCF7 cells could be 
explained by an increased mitochondrial quality (more 
undamaged mtDNA), whereas the decreased mtOCR 
of MDA-MB-231 cells was associated with persistent 
mtDNA damage (common deletion) despite an increased 
total mtDNA content (Fig. 1e).

With respect to irradiation doses, maximal effects 
on mtOCR (Fig.  1c) correlated with maximal effects on 
migration (Fig. 1a). In the same conditions, mtROS levels 
were induced in MCF7 cells for doses ranging from 0.25 
to 1 Gy (Fig. 1f ). Actually, mtROS, mtH2O2 and total ROS 
levels were all significantly increased 48  h after 0.5  Gy 
(Fig.  1g). In MDA-MB-231 cells, the migration and 
mtOCR peaks observed at 0.125 Gy closely corresponded 
to the maximal mtROS levels also observed at 0.125 Gy 
(Fig. 1h). mtROS, mtH2O2 and total ROS levels were all 
significantly increased 48 h after 0.125 Gy (Fig. 1i). This 

indicated that mtROS could participate in the migratory 
response of breast cancer cells irradiated at subclinical 
doses.

Targeting mtROS inhibits irradiation-induced breast cancer 
cell migration
Whether migration induced by subclinical doses of irra-
diation depends on mtROS production was tested using 
N-acetyl-L-cysteine (NAC, a general antioxidant) and 
MitoQ (selectively targeting mtROS) [31]. The two anti-
oxidants inhibited basal and irradiation-induced breast 
cancer cell migration, with NAC being more effective for 
MCF7 and MitoQ for MDA-MB-231 cells (Fig.  2a). In 
general, mitochondrial superoxide has a very short half-
life, as it is rapidly converted to H2O2 by mitochondrial 
superoxide dismutase 2 (SOD2) [32]. Whether mtH2O2 is 
involved in the breast cancer cell migration induced by 
subclinical doses of irradiation was tested using a mito-
chondria-targeted version of human catalase (mtCAT) 
(Figure S2 and Supplementary Methods), which effec-
tively blocked irradiation-induced mtH2O2 production 

Fig. 2 Targeting ROS inhibits the human breast cancer cell migration induced by subclinical doses of irradiation. (A-C) MCF7 and MDA-MB-231 were ir-
radiated or not with a single dose of 0.5 Gy and 0.125 Gy, respectively. (A) Where indicated, cells were treated with general antioxidant N-acetyl-L-cysteine 
(NAC, 4 mM) or mtROS inhibitor MitoQ (500 nM for MCF7 and 250 nM for MDA-MB231 cells) starting 24 h after irradiation and during a 24 h migration 
in transwells with FBS as chemoattractant. MCF7 cell migration is shown on the left (n = 4) and MDA-MB cell migration on the right graph (n = 7–8). (B) 
Twenty-four hours after irradiation, MCF7 and MDA-MB-231 cells were transfected with a plasmid encoding a mitochondria-targeted version of catalase 
(mtCAT). Mitochondrial H2O2 measured 24 h later using MitoPY1 fluorescence is shown in the left graph for MCF7 (n = 4) and in the right graph for MDA-
MB-231 (n = 5) cells. (C) Cells were transfected or not with a plasmid encoding mtCAT 1 h after irradiation, left to recover for 24 h, and then assayed for mi-
gration for 24 h in transwells with FBS as chemoattractant. Migration is shown in the left graph for MCF7 (n = 3–4) and in the right graph for MDA-MB-231 
(n = 6) cells. All data are shown as mean ± SEM. * P < 0.05, ns P > 0.05, by Student’s t test (A-C)
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by both cell lines (Fig.  2b). Downstream, mtCAT com-
pletely inhibited irradiation-induced MCF7 and MDA-
MB-231 cancer cell migration (Fig.  2c). Collectively, we 
concluded at this stage that subclinical doses of radiation 
trigger human breast cancer cell migration by induc-
ing long-lasting ETC dysfunction, resulting in enhanced 
mitochondrial superoxide and mtH2O2 production.

Generating H2O2 within mitochondria stimulates breast 
cancer cell migration
A corollary hypothesis was that elevating mtH2O2 levels 
could be sufficient to induce breast cancer cell migra-
tion, which was tested using a mtDAAO-HyPer mito-
chondria-targeted system [29] (Fig.  3a). In the presence 
of D-alanine, DAAO increased mtH2O2 levels in MCF7 
and MDA-MB-231 cells (Fig. 3b), which promoted their 
migration (Fig.  3c). Combining D-alanine supplementa-
tion and subclinical doses of radiation further increased 
mtH2O2 levels (Fig.  3b), but not cancer cell migration 
(Fig.  3c). We then tested if additional mtH2O2 gener-
ated by mtDAAO-HyPer exacerbated promigratory cell 
response by inducing cell death pathways; however both 

cell lines exhibited no change in cytochrome c release, 
caspase cleavage, or cellular apoptosis/necrosis, as mea-
sured by Annexin V/PI staining (Figure S3).

Transcription factors AP1 and NF-κB participate in breast 
cancer cell migration induced by subclinical doses of 
radiation
The mitogen-activated kinase (MAPK) pathway has been 
suggested to promote cancer cell migration in a ROS-
sensitive manner [33]. Accordingly, MAP2K1/MEK1 
expression was induced 48 h after a 0.5 Gy dose delivery 
to MCF7 cells (Fig.  4a). This response was inhibited by 
MitoQ, linking irradiation-induced mtROS production 
to MAPK signaling in these cells. However, subclinical 
dose delivery to MDA-231 cells comparatively repressed 
MAP2K1/MEK1 expression independently of the pres-
ence of MitoQ (Fig. 4a), indicating that mtROS signaling 
is multifactorial. We therefore decided to focus on ROS-
sensitive transcription factors.

Downstream of the MAPK pathway and of several 
other ROS-sensitive pathways [34], transcription fac-
tors AP1 and NF-κB are known to be ROS-inducible 

Fig. 3 Enhancing H2O2 generation in mitochondria triggers human breast cancer cell migration. (A) Cartoon (produced using BioRender) depicting the 
mtDAAO-HyPer system used to generate (DAAO reaction fueled by exogenous D-alanine) and detect (HyPer fluorescent reporter) H2O2 selectively in cell 
mitochondria, based on previously reported data [29]. The graph shows a standard curve (F500/F420 HyPer fluorescence) generated 1 h after providing 
increasing doses of D-alanine to MCF7 cells expressing the mtDAAO-HyPer system, with 10 mM of L-alanine serving as a negative control (n = 5). (B-C) 
MCF7 and MDA-MB-231 were irradiated or not with a single dose of 0.5 Gy and 0.125 Gy, respectively, transfected with the mtDAAO-HyPer system 1 h 
later, and left to recover for 24 h before treatment with L-alanine (10 mM) or D-alanine (10 mM). (B) One hour later, HyPer fluorescence was measured in 
MCF7 (left graph, n = 5) and MDA-MB-231 (right graph, n = 5) cells. (C) After irradiation and transfection, MCF7 (left graph, n = 12) and MDA-MB-231 (right 
graph, n = 8–9) cell migration was determined over 24 h in transwells with FBS as chemoattractant in the presence of either L-alanine or D-alanine. All 
data are shown as means ± SEM. * P < 0.05, ** P < 0.01 compared to control; by one-way ANOVA with Dunnett post-hoc test (A) or by Student’s t test (B, C)
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[35–37] and to promote cancer cell migration [36, 38], 
but whether they could be activated by mtROS 48  h 
after subclinical dose irradiation was unknown. Inhibit-
ing AP1 with T-55241 reduced the basal migration and 
blunted the subclinical radiation-induced gain in migra-
tion of both MCF7 and MDA-MB-231 cells (Fig.  4c). 
Similarly, inhibiting the transcriptional activity of NF-κB 
with IKK inhibitor BMS-345541 blocked basal migra-
tion and radiation-induced migration of the two cell 
lines (Fig. 4b), indicating that both AP1 and NF-κB and 
participate in the irradiation-induced promigratory 
phenotype in breast cancer cells. Their relative contri-
bution was further evaluated in our cell models using 
fluorescent reporters of their transcriptional activities. 
In MCF7 cells, a 0.5 Gy irradiation reduced AP1 activity 
(Fig.  4d) but increased NF-κB activity (Fig.  4e), and the 
two answers were blocked by MitoQ. Comparatively, a 
0.125 Gy irradiation activated AP1 (Fig. 4d) but did not 
modify NF-κB activity (Fig.  4e) in MDA-MB-231 cells. 

AP1 activation did not occur in the presence of MitoQ 
(Fig. 4d). Irradiation at subclinical doses can thus activate 
mtROS-sensitive promigratory transcription factors, but 
their nature differed across different human breast cancer 
cell lines (Fig. 4f ).

Targeting mtROS does not reduce the cell killing 
therapeutic activity of ionizing radiation
We finally aimed to provide some relevance to our obser-
vations with respect to photon radiotherapy, generally 
delivered in 5 fractions per week in clinical settings. One 
and two fractions of 0.5 Gy induced MCF7 cell migration, 
but this gain was lost with additional fractions (Figure 
S4a). Comparatively, MDA-MB-231 cell migration was 
increasingly induced, reaching a maximum of ~ 4-fold 
from 2 to 5 fractions.

While subclinical doses of radiation were used 
throughout this study to model dose deposition at and 
beyond the tumor margin, most breast cancer cells in 

Fig. 4 Subclinical doses of radiation activate AP1 and NF-κB in human breast cancer cells. (A-E) MCF7 and MDA-MB-231 were irradiated or not with a 
single dose of 0.5 Gy and 0.125 Gy, respectively, and left to recover for 24 h. (A) MAP2K1/MEK1 mRNA expression was measured in MCF7 and MDA-MB-231 
cells 24 h after treatment ± MitoQ (500 nM for MCF7 and 250 nM for MDA-MB-231 cells) (n = 9). (B) The migratory activity of MCF7 (left graph, n = 5–6) or 
MDA-MB-231 (right graph, n = 6) cells was assessed 24 h after treatment ± AP1 inhibitor T-52241 (40 µM). (C) Same as in (B) but ± NF-κB inhibitor BMS-
345541 (10 µM) to treat MCF7 (left graph, n = 6) and MDA-MB-231 (right graph, n = 9) cells. (D) Cells were treated ± N-acetyl-L-cysteine (NAC, 4 mM) or 
MitoQ (500 nM for MCF7 and 250 nM for MDA-MB-231 cells). AP1 transcriptional activity determined 24 h later using a dual luciferase reporter assay is 
shown on the left graph for MCF7 (n = 6) and on the right graph for MDA-MB-231 (n = 6) cells. (E) As in (D) but measuring NF-κB transcriptional activity in 
MCF7 (left graph, n = 6) and MDA-MB-231 (right graph, n = 6) cells. (G) Schematic produced using BioRender depicting the molecular mechanisms sup-
porting the human breast cancer cell migration induced by subclinical doses of radiation. Sequentially, irradiation disturbs the electron transport chain 
(ETC), promotes mitochondrial ROS (mtROS) production, and activates transcription factors AP1 and NF-κB that trigger breast cancer cell migration. All 
data are shown as means ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.005, ns P > 0.05 compared to control unirradiated cells, by Student’s t test
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clinical settings receive 1.8  Gy to 2  Gy [12]. MitoQ did 
not interfere with irradiation-induced cell killing at 2 Gy 
(Figure S4b), supporting its potential use as an adjuvant 
treatment with photon radiotherapy to counter breast 
cancer cell migration induced by subclinical doses of 
irradiation.

Discussion
In this study, we tested whether long-lasting mitochon-
drial alterations could promote human breast cancer 
cell migration. To avoid focusing on idiosyncrasies, we 
intentionally used two very different human breast can-
cer cell lines representing luminal A and triple-negative 
subtypes. They further represent contrasting metabolic 
archetypes, as MCF7 cells are oxidative whereas MDA-
MB-cells are glycolytic in vitro [39]. We identified a 
sequence of events accounting for migration induced 
by subclinical doses of radiation (< 2  Gy), commencing 
with the induction of mitochondrial dysfunction, mtROS 
production and subsequent activation of redox-sensitive 
transcription factors. mtROS generation was a shared 
response between both cell lines. It was still detected 
48  h after irradiation and was, thereby, lending itself to 
pharmacological or genetic repression after irradiation-
induced migration.

Our results show that oxidative MCF7 cells demanded 
a higher irradiation dose to optimally trigger migra-
tion than glycolytic MDA-MB-231. This phenomenon 
can be explained by both increased mitochondrial fit-
ness and lower basal mtROS [40]. Nevertheless, the 
correlation that we observed between the irradiation 
dose needed to trigger optimal migration and changes 
in mtOCR and increased mtROS levels was striking, 
even if the nature of the mitochondrial dysfunction dif-
fered. In the case of MCF7, we postulate that increased 
undamaged mtDNA content 48 h after irradiation could 
be the result of an increased mitochondrial turnover and, 
therefore, mitochondrial abundance. This would logi-
cally lead to increased mtROS production via increased 
cell respiration, which is known to be intrinsically cou-
pled with electron leak from the ETC [41]. Of note, the 
resulting acquisition of a migratory phenotype depends 
on (mt)ROS, as shown by the inhibitory effects of NAC 
and MitoQ, but is also likely modulated by repressors 
and/or damage to the migratory machinery at irradiation 
doses > 0.5  Gy [42]. This would explain why increased 
mtROS production was not always sufficient to trigger 
MCF7 cell migration. In contrast to MCF7, glycolytic 
MDA-MB-231 cells displayed an increase in persistent 
mtDNA damage 48 h after a 0.125 Gy irradiation, asso-
ciated with a drop in mtOCR despite increased mtDNA 
content. Here, we suggest a compensatory response 
to increase mitochondrial biogenesis accompanied 
by a delay in the clearance of damaged mitochondria. 

Preserved mtOCR at irradiation doses higher that 
0.125  Gy may be explained by the activation of cellular 
antioxidant defenses above a low dose threshold, as pre-
viously proposed by others [43]. This is supported by our 
observation that an increase in mtH2O2 by mtDAAO-
HyPer did not further induce migration in either cell line, 
nor did it induce an increase in cytochrome c release or 
apoptosis/necrosis (Figure S3), which most likely impli-
cates that continual sustained mtH2O2 generation was 
not enough to overwhelm cellular antioxidant defense. 
In the case of MDA-MB-231 cells, increased mtROS 
production can be directly attributed to mitochondrial 
defects known to be associated with increased electron 
leak upon bottlenecking ETC damage [22]. This could 
then lead to reverse ETC flux associated with Complex 
I electron leakage [44]. The mitochondrial response 
of breast cancer cells to subclinical doses of radiation 
is summarized in Fig.  4g. Of note, although we posit 
mtDNA alterations as an initial trigger to increase 
mtROS levels, an additional contribution of mitochon-
drial content [45], swelling versus shrinkage [46] and fis-
sion versus fusion dynamics [47] is possible.

When electrons leak from the ETC, mitochondrial 
superoxide is formed followed by mitochondrial H2O2 
generation. With a longer half-life, H2O2 can perme-
ate the mitochondrial membrane [41] and act as a redox 
signal to activate ROS-sensitive promigratory pathways 
[48]. c-Src kinase belongs to one of these pathways: its 
oxidation activates the TGFβ pathway [22, 49] resulting 
in the upregulation of the focal adhesion kinase Pyk2 that 
remodels the cytoskeleton for migration. In breast can-
cer cells, we further report that subclinical doses of irra-
diation activate redox-sensitive transcription factors AP1 
and NF-κB that cooperate to induce migration. The pro-
cess would logically depend on the upstream activation of 
mtROS sensitive pathways, including but not limited to 
the MAPK pathway [34]. Others reported AP1 activation 
in RAW 264.7 macrophages [50] and NF-κB activation in 
lymphoblastoid 244B cells [35] following subclinical radi-
ation doses, indicating that the two transcription factors 
participate in the general cellular response to such insult. 
Upon activation, AP1 and NF-κB promote cancer cell 
migration though inducing the expression of many genes 
related to cell adhesion, cytoskeleton remodeling, matrix 
deposition and extracellular proteolysis [51, 52]. Inter-
estingly, all mtROS [23], AP1 [53] and NF-kB [54] are 
positive EMT regulators in breast cancer cells, offering a 
likely molecular pathway to explain irradiation-induced 
EMT [17, 18].

While the single delivery of a subclinical dose of radia-
tion stimulated breast cancer cell migration, it did not 
trigger in vitro invasion, another necessary phenotype 
supporting metastasis. Yet, we previously showed that 
sustained mtROS production is a fundamental and 
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essential characteristic of metastatic progenitor cells in 
human breast cancer models in mice [55]. It is therefore 
possible that repeated subclinical dose delivery in frac-
tionated radiotherapy regimen would eventually promote 
metastasis, which has been suggested by others based on 
clinical evidence [14]. Exploring this possibility experi-
mentally is a major perspective of our work. If verified, 
we believe that targeting mtROS could be a preferential 
therapeutic answer instead of targeting the numerous 
mitochondrial phenotypes capable of enhancing mtROS 
production and the multitude of redox-sensitive promi-
gratory pathways downstream of mtROS. Among other 
drugs, MitoQ selectively inhibiting mtROS formation is 
a promising candidate as it already successfully passed 
phase I clinical trials with limited toxicity [56]. For thera-
peutic mtROS inhibition, noninvasive mtROS imaging 
in tumors in vivo would also be useful. Specific probes 
developed for electron paramagnetic resonance bear this 
promise [57].

Conclusively, our study shows that breast cancer cell 
migration can be induced by a single subcytotoxic dose 
of photon irradiation, which can be prevented by mtROS 
inhibition.
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