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Abstract 

Background: Pancreatic ductal adenocarcinoma (PDAC) lacks effective treatment options beyond chemotherapy. 
Although molecular subtypes such as classical and QM (quasi‑mesenchymal)/basal‑like with transcriptome‑based 
distinct signatures have been identified, deduced therapeutic strategies and targets remain elusive. Gene expres‑
sion data show enrichment of glycolytic genes in the more aggressive and therapy‑resistant QM subtype. However, 
whether the glycolytic transcripts are translated into functional glycolysis that could further be explored for metabolic 
targeting in QM subtype is still not known.

Methods: We used different patient‑derived PDAC model systems (conventional and primary patient‑derived cells, 
patient‑derived xenografts (PDX), and patient samples) and performed transcriptional and functional metabolic analy‑
sis. These included RNAseq and Illumina HT12 bead array, in vitro Seahorse metabolic flux assays and metabolic drug 
targeting, and in vivo hyperpolarized [1‑13C]pyruvate and [1‑13C]lactate magnetic resonance spectroscopy (HP‑MRS) 
in PDAC xenografts.

Results: We found that glycolytic metabolic dependencies are not unambiguously functionally exposed in all QM 
PDACs. Metabolic analysis demonstrated functional metabolic heterogeneity in patient‑derived primary cells and less 
so in conventional cell lines independent of molecular subtype. Importantly, we observed that the glycolytic product 
lactate is actively imported into the PDAC cells and used in mitochondrial oxidation in both classical and QM PDAC 
cells, although more actively in the QM cell lines. By using HP‑MRS, we were able to noninvasively identify highly gly‑
colytic PDAC xenografts by detecting the last glycolytic enzymatic step and prominent intra‑tumoral [1‑13C]pyruvate 
and [1‑13C]lactate interconversion in vivo.

†Irina Heid, Corinna Münch and Sinan Karakaya are equally contributing first 
authors; Rickmer Braren, Marija Trajkovic‑Arsic and Jens T. Siveke are equally 
contributing seniour authors.

*Correspondence:  m.trajkovic‑arsic@dkfz.de; j.siveke@dkfz.de

3 Division of Solid Tumor Translational Oncology, German Cancer Consortium 
(DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, 
Heidelberg, Germany
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40170-022-00298-5&domain=pdf


Page 2 of 14Heid et al. Cancer & Metabolism           (2022) 10:24 

Conclusion: Our study adds functional metabolic phenotyping to transcriptome‑based analysis and proposes a 
functional approach to identify highly glycolytic PDACs as candidates for antimetabolic therapeutic avenues.

Keywords: Glycolysis, PDAC, Lactate, Molecular subtype, Hyperpolarized magnetic resonance spectroscopy

Background
Despite enormous research efforts, pancreatic ductal 
adenocarcinoma (PDAC) remains a fatal disease with 
marginal clinical advancement [1]. Although genomic 
and transcriptional profiles of PDAC have been stud-
ied in great detail [2–4], effective targeting strate-
gies remain scarce. Sequencing efforts in large patient 
cohorts have identified distinct molecular PDAC sub-
types in several independent studies with two domi-
nant subgroups. Those are termed classical (term used 
hereafter) or pancreatic progenitor with more epithe-
lial differentiated tumor and quasi-mesenchymal (QM; 
term used hereafter) or squamous or basal like [1, 5–7] 
with more mesenchymal tumor respectively. Especially, 
QM PDACs demonstrate very aggressive phenotypes 
with shorter median survival and resistance to first-line 
chemotherapy with FOLFIRINOX [1]. Which cancer 
cell features contribute to the aggressive and therapy-
resistant QM phenotype remains unknown.

Metabolic rewiring, i.e., an individual cell’s ability to 
use different metabolic pathways depending on alter-
nating growth conditions including oxygen and nutri-
ent availability, has been implicated as a major cause 
of therapy resistance in cancers and aggravates clini-
cally successful targeting [8]. This allows cells not only 
to adapt but also to thrive on particularly scarce con-
ditions of hypoxia and nutrient limitations typically 
observed in PDAC [9]. Glycolysis is the most promi-
nent cancer-associated metabolic pathway. Although 
high cancer dependency on glucose was described 
nearly 100  years ago by Otto Warburg [10], glycolytic 
targeting is still not widely therapeutically exploited. 
Recently, expression of glycolytic metabolic transcripts 
has been associated with the resistant QM PDAC sub-
type in patients [11]. Work in PDAC mouse models 
demonstrated that glycolysis is the major metabolic 
effector of oncogenic KRAS, the leading PDAC driver, 
and that co-targeting of RAS-RAF-MEK-MAPK cas-
cade and glycolysis may be an effective approach in 
PDAC [12]. However, functional evidence that gly-
colysis is indeed significantly operable in human QM 
PDACs is missing.

Here, we addressed this missing link and analyzed 
functional exposure of glycolysis in different clinically 
relevant PDAC samples ranging from long-term cul-
tured PDAC cell lines to patient-derived xenografts 
and primary cells and bulk PDAC probes. We found 

considerable heterogeneity in the glycolytic behavior 
especially among patient-derived PDAC cells. How-
ever, individual representatives of the QM subtype 
were indeed functionally highly glycolytic what was 
preserved even in the in  vivo xenograft setting. By 
using a noninvasive hyperpolarized 13C-magnetic reso-
nance spectroscopy (HP-MRS), we were able to detect 
the final glycolytic step in  vivo, namely intratumoral 
conversion of HP-[1-13C]pyruvate to HP-[1-13C]lac-
tate. Importantly, QM PDAC cells actively consumed 
the final glycolytic product, lactate, in mitochondrial 
oxidative phosphorylation in  vitro, what was further 
in  vivo translated and detected as HP-[1-13C]lactate 
to HP-[1-13C]pyruvate conversion in QM PDAC xeno-
grafts. This suggested that glycolytic QM cells not only 
actively produce lactate but also metabolically use it. 
Our work opens a perspective for noninvasive detec-
tion of glycolytic PDACs and monitoring of individual-
ized anti-glycolytic targeting approaches.

Methods
PDAC cell lines
All PDAC cell lines have been obtained from the ATCC 
and regularly externally authenticated (at least once 
a year). PDAC cell lines (PSN1 (RRID: CVCL_1644); 
Kp4 (RRID: CVCL_1338), PaTu8988T (CVCL_1847); 
MiaPaca2 (RRID: CVCL_0428), PaTu8988S (RRID: 
CVCL_1846), HPAC (RRID: CVCL_3517), HPAFII 
(RRID: CVCL_0313), and HupT4 (RRID: CVCL_1300) 
were grown in Dulbecco’s Modified Eagle Medium (1:1 
mix of DMEM no. 11966025 and DMEM no. A1443001, 
Thermo Fisher Scientific, Waltham, USA) adapted to final 
concentrations of 5  mM D-glucose (Thermo Fisher Sci-
entific, Waltham, USA), 2 mM L glutamine, 5% v/v fetal 
bovine serum (FBS, Thermo Fisher Scientific, Waltham, 
USA), and 1% v/v penicillin/streptomycin (P/S, Thermo 
Fisher Scientific, Waltham, USA) if not stated otherwise.

Patient‑derived cells (PDCs)
From 11 PDX samples, we were able to isolate and cul-
tivate cancer cells (PDCs) for further analysis. For all 
metabolic analysis, PDC cell lines were cultivated in a 
1:1 mixture of Keratinocyte-SF medium (no. 17005075, 
Thermo Fisher Scientific, Waltham, USA) and RPMI 
1640 (no. 11879020, Thermo Fisher Scientific, Waltham, 
USA) adapted to final concentrations of 5 mM D-glucose, 
4.5  mM L-glutamine, 0.26  mM sodium pyruvate, 6%v/v 
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FBS, and 1% v/v final mixture of penicillin/streptomycin 
(Thermo Fisher Scientific, Waltham, USA), and antimy-
cotic/antibiotic (cat. no. 15240–062, Thermo Fisher Sci-
entific) if not stated otherwise.

RNA isolation and gene expression analysis
Established/PDC cells were cultivated for 48  h in the 
respective media. At confluence of 70–80%, cells were 
placed on ice and washed twice with ice-cold PBS, 
mechanically scratched from the plate in 1 ml of ice-cold 
PBS, and centrifuged at 4 °C/400 g for 5 min. Pelleted cells 
were stored in − 80  °C until all cells were collected for 
RNA isolation. RNA was isolated using the Maxwell RSC 
simplyRNA Cells Kit (no. AS1390, Promega, Germany). 
Cell RNA isolation kit was used according to the manu-
facturer’s instructions. Total RNA was stored at − 80  °C 
until further processing and gene expression analysis. For 
PDX samples, RNA was isolated from fresh-frozen PDX 
tumor tissue using the PARIS (Ambion) isolation kit.

PDX samples preparation
Establishment of the PDX mouse model was performed using 
surgically resected PDAC tissues collected from patients.

Seahorse metabolic flux assays
All assays were performed following the manufacturer’s 
instructions (Agilent Technologies).

Immunohistochemistry and immunofluorescence
Immunohistochemistry was performed according to 
standard laboratory procedures on PFA fixed, FFPE tis-
sue samples. Antibodies used in this study are as fol-
lows: MCT4, Atlas Antibodies (Sigma-Aldrich, Cat no. 
HPA021451, RRID:AB_1853663); HIF1a, BD Transduc-
tion laboratories no. 610959 (RRID: AB_398272); MCT1, 
Abcam, no. ab85021(RRID: AB_10674945); KRT81, 
Santa Cruz, no. sc-100929 (RRID: AB_2132772); and 
pancytokeratin, Abcam no. ab6401(RRID: AB_305450).

Hyperpolarized magnetic resonance spectroscopy 
(HP‑MRS)
PSN1/HPAC cells were implanted subcutaneously 
(s.c.) into the back of male or female 6-week-old 

Crl:NIH-Foxn1rnu rats (Charles River). Pyruvate-lactate 
metabolism was measured with multi-frame slice spec-
troscopy (MRS, 15  mm slice thickness) using alternating 
metabolite-frequency-selective excitation (flip angle 30°, 
250  Hz transmit bandwidth, 2  kHz receiver bandwidth, 
both metabolites separately excited and measured every 
2  s) while injecting hyperpolarized HP-[1-13C]pyruvate 
or HP-[1-13C]lactate. Procedure optimization is described 
in detail in our previous study [13]. For data analysis after 
HP-[1-13C]pyruvate injection, lactate and pyruvate spec-
tral peak heights were summed over all time points and 
presented as the ratio of these areas under curves (AUC 
lac/AUC pyr) [14]. For data analysis after HP-[1-13C]lactate 
injection, due to low pyruvate signal, the signal intensities 
of lactate and pyruvate spectra were averaged over 10 time 
points near the maximum intensity and then fit with a con-
stant offset plus a Lorentzian function with fixed 30 Hz full 
width at half maximum to determine the peak area (PA) 
[15], using the least-squares curve fit function in MatLab.

Results
Glycolytic metabolic gene transcripts are present in QM 
PDAC subtype
To evaluate whether glycolytic transcripts are omnipres-
ent in the QM PDAC subtype [11], we first performed gene 
expression analysis in multiple preclinical and clinical sam-
ples (Fig. 1a). RNA-seq or Illumina HT12 gene expression 
analysis was performed for conventional PDAC cell lines 
(n = 8), patient-derived xenografts (PDX, n = 34), and PDX-
derived cancer cells (PDC, n = 11). Transcriptomes from 
bulk tissue of 204 PDAC samples from previously published 
resource were utilized (E-MTAB-1791). All samples were 
then subtyped to QM or classical group. For tumor subtype 
determination, nonnegative matrix factorization (NMF) 
[16] was used, after median centering of the data. Consen-
susClusterPlus [17] was used to validate class assignment 
from NMF. In a first benchmarking step, we used publicly 
available transcriptionally subtyped PDAC cohorts (PDAC 
cell lines (GSE21654 [18]), PDAC xenograft (E-MTAB-4029 
[19]), and bulk PDAC tissue (GSE16515 and GSE15471 [20, 
21]) to verify the robustness of our classification pipeline. 
With this approach, we were able to reproduce more than 
90% of the reported subtypes in our test datasets.

(See figure on next page.)
Fig. 1 Gene set enrichment analysis (GSEA) in different PDAC cohorts and models. a Models used in this study. b Enrichment plots for the selected 
“Collisson QM” and “Bailey squamous GP2” assigner gene sets in our patient cohort. Both gene sets are enriched in here defined QM PDAC samples. 
FDR (false discovery rate) and NES (normalized enrichment score) presented in the figure. c GSEA analysis for QM vs classical groups was performed 
for cell lines (n = 8; 4QM, 4 classical), patient‑derived cells (PDC; n = 11, 5 QM and 6 classical), patient‑derived xenografts (PDX; n = 34, 12 QM and 
22 classical), and patient PDAC samples (n = 204; 116 QM, 88 classical). Presented are NES values for selection of metabolic gene sets identified 
as enriched (NES > 1.3, FDR q‑value < 0.07) in QM subtype. The gene set databases HALLMARK, REACTOME, and KEGG were used for analysis. 
Epithelial‑to‑mesenchymal transition (EMT), glycolysis/glucose metabolism, hypoxia, and MYC targets gene sets are commonly enriched in QM 
datasets. Red dots emphasize the metabolic pathways that are commonly enriched in the models presented here. Glycolysis enrichment plot for 
patient cohort (n = 204) presented
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Fig. 1 (See legend on previous page.)
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After establishing the pipeline, the same parameters 
were used for subtyping of patient PDAC samples, PDX 
cohort, and PDC samples to QM, and classical group 
and gene set enrichment analysis (GSEA) comparing the 
QM and classical groups were performed. By using our 
subtyping platform, in the PDAC patient sample cohort 
(204 samples), 88 are classified as classical and 116 as 
QM subtype. Samples clustering to the QM subtype pre-
sented significant enrichment of selected QM and squa-
mous subtype assigner gene sets previously described [5, 
6] (Fig.  1b and supplementary Table  1) supporting cor-
rect subtype assignment.

In the PDX cohort, 22 classical and 12 QM tumors 
were identified. Among PDCs, 6 classical (PDC44, 58, 
59, 62, 70, 89) and 5 QM (PDC 34, 57, 69, 78, 80) were 
identified. The 8 PDAC cell lines used in this study were 
previously classified as QM (KP4, PSN1, MIAPaca2, 
PaTu8988T) and classical (PaTu8988S, HUPT4, HPAFII, 
HPAC) [22]. We analyzed gene expression of vimentin 
(VIM) and E-cadherin (CDH1) as markers of mesenchy-
mal and epithelial status respectively. As expected, gen-
eral trend towards higher VIM expression in QM and 
CDH1 expression in classical PDAC cells was observed 
(supplementary Figure. 1a).

After classification, QM and classical groups were 
compared by GSEA for HALLMARK, REACTOME, and 
KEGG collections in all datasets. A full list of all enriched 
gene sets with respective normalized enrichment score 
(NES) and false discovery rate (FDR) values is given in 
supplementary Table 2. As expected for the mesenchymal 
phenotype, enrichment of the epithelial-to-mesenchymal 
transition (EMT) gene set was observed in the QM group 
in PDX, PDC, and patient PDAC samples (Fig.  1c) sup-
porting correct assignment of the subtypes. In the QM 
samples, transcripts for glycolysis, hypoxia, and MYC-
target genes were well preserved throughout different 
sample collections (Fig.  1c). The hypoxia gene set was 
enriched in QM bulk PDAC tissue, PDX, and PDC data 
sets, even though PDC cells were cultured under com-
mon laboratory normoxic conditions. Concordantly with 
the well-described correlation of hypoxia and glycolysis 
[23], glycolysis/glucose metabolism transcripts were also 

enriched in the QM patient PDAC samples, PDX and 
PDAC cell line datasets, and MYC target gene sets as 
well. Interestingly, in the QM PDCs, the glycolysis gene 
set was not enriched, possibly due to low sample num-
bers but also suggesting no unambiguous assignment of 
glycolytic genes to the QM subtype at least in PDCs. In 
summary, we observed strong transcriptional association 
of QM subtype with glycolysis in different preclinical and 
clinical samples.

Glycolytic pathway activity is high in individual QM PDAC 
cells
To investigate whether glycolysis is indeed functionally 
active in QM PDAC cells, we performed Seahorse meta-
bolic flux assays and evaluated the extracellular acidifica-
tion rate (ECAR) and oxygen consumption rate (OCR) as 
readouts of two major energy-supplying processes, gly-
colysis and oxidative phosphorylation respectively. ECAR 
and OCR levels were measured in cell lines and PDCs 
in media with physiological concentrations of 5  mM 
glucose with addition of 2  mM glutamine. Under these 
conditions, PSN1 and PDC69, both QM, presented the 
highest ECAR/OCR ratios and glycolytic energy pheno-
type among cell lines and PDCs, respectively (Fig. 2a and 
supplementary Table  3). However, energetic phenotype 
of other cell lines and PDCs was rather heterogeneous 
and independent of their transcriptional subtype, being 
QM or classical.

Notably, qPCR analysis revealed that the relative gene 
expression of the last glycolytic enzyme lactate dehydro-
genase A (LDHA), lactate exporter MCT4 (SLC16A3), 
and importer MCT1 (SLC16A1) is high in PSN1 and 
PDC69 cells in comparison with other cells. The same 
was true for HIF1a, a central cellular regulator of hypoxia 
and glycolysis (Fig. 2b). Moreover, hierarchical clustering 
of transcriptome data showed generally higher expres-
sion of several glycolytic genes (e.g., HK1, HK2, ENO1, 
ENO2, PGK1) in QM cell lines and PDCs, especially in 
PSN1 and PDC69 (Fig. 2c). Taken together, active glyco-
lysis was observed in some QM PDAC cells that corre-
lated well with the high expression of glycolytic genes but 
was not unambiguously connected to QM subtype.

Fig. 2 Functional glycolysis evaluation in PDAC cells. a ECAR to OCR ratios (ECAR/OCR) and energy maps as measured by seahorse metabolic 
flux assay for PDAC cell lines (upper) and PDCs (lower) in medium supplemented with 5 mM glucose (physiological concentration) and 2 mM 
glutamine. Higher ECAR/OCR ratio indicates higher glycolysis in PSN1 and PDC69 cells under these conditions. Presented are mean + SD values 
calculated from 2 independent experiments, with at least 5 technical replicates per cell line per experiment. Energy maps (OCR vs ECAR plots) show 
glycolytic energetic positioning of PSN1 and PDC69 cells. Representative energy maps from one experiment, at least 5 technical replicates per cell 
line. At least 2 independent experiments performed. OCR and ECAR values were normalized to 10,000 post‑experimentally counted, viable cells. 
Dotted lines present arbitrary cutoff levels used for separation of different energy phenotypes (glycolytic, oxidative, energetic, or less metabolic). 
b Relative gene expression (qPCR) data for LDHA, MCT1 (SLC16A1), MCT4 (SLC16A3), and HIF1a in cell lines and PDCs. High gene expression levels 
were observed for PSN1 and PDC69 (both QM subtype). Beta‑glucuronidase (GUSB) expression was used as house‑keeper control. c Hierarchical 
clustering analysis for glycolytic genes using gene expression data for cell lines (RNA‑seq) and PDCs (HT12 Illumina gene expression array). Z‑score: 
red color—high expression, blue color—low expression. PSN1 and PDC69 show higher expression of investigated glycolytic genes

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Lactate exporter MCT4 has previously been suggested 
to be a good marker of glycolytic PDACs [24]. In publicly 
available TCGA RNA expression datasets, high expres-
sion of both lactate transporters MCT4 and MCT1 cor-
related with worse survival in PDAC patients associated 
with the resistant QM subtype (Fig.  3a). Immunohisto-
chemical analysis of MCT1 and MCT4 in FFPE samples 
of 30 human PDACs suggested that both MCT4 and 
MCT1 were expressed on cancer and stromal cells with 
MCT4 being more prominently expressed on cancer 
cells, while MCT1 was often prominently expressed in 
the surrounding stroma as well (Fig. 3b). In our cohorts, 
we observed that MCT4 (SLC16A3) gene expression 
levels were higher than MCT1 (SLC16A1) in both bulk 
PDAC and PDX tissue samples (Fig. 3c and supplemen-
tary Figure.  2a), suggesting a lead role of MCT4 as lac-
tate transporter in tissue context. Furthermore, multiplex 
immunofluorescence for pancytokeratin (PanCK), MCT4 
and KRT81, an established QM marker [19], in 6 PDAC 
FFPE specimens, showed that the proportion of MCT4-
positive cells was higher among KRT81 positive (30–
50%) than KRT81-negative cancer cells (< 20%) (Fig. 3d). 
Our data support the use of MCT4 as a surrogate marker 
of QM PDACs with activated glycolysis.

PDAC cells actively use lactate as oxidative fuel
Intrigued by high expression of lactate transporters 
detected in some of the QM PDAC cells, we aimed to 
investigate lactate metabolism in PDAC. It is now well 
accepted that lactate is not only the end waste product 
of glycolysis but is also actively used in metabolic pro-
cesses in cancer as well. Lactate conversion to pyruvate 
and subsequent oxidation in the mitochondria has been 
suggested in murine PDAC [25]. However, whether this 
effect is especially attributable to lactate-producing high-
glycolytic QM PDAC cells is still not known. To investi-
gate this, PDAC cells were cultivated for 7 h in (i) “basal” 
DMEM or RPMI media without glucose or glutamine 
supplementation or in (ii) “basal” media supplemented 
with lactate (basal + 10  mM L-lactate). Consequently, 
Seahorse metabolic flux measurement was performed, 
and OCR values measured in media with and without 
lactate were compared. In basal media, classical PDAC 
cell lines (HPAC, HPAFII, and HupT4) presented gen-
erally higher basal OCR levels than the QM cell lines, 
indicating that oxidative phosphorylation (OXPHOS) 
is well supplied by alternative fuels other than glucose 
or glutamine in the classical cell lines (supplementary 
Figure  2b). Interestingly, lactate supplementation to the 
medium led to OCR boost in all cells of both QM, and 
classical subtypes with however more pronounced OCR 
increase in the QM PDAC cell lines (Fig.  4a). In PDCs, 
lactate treatment led to an OCR increase in all cells, 

without pronounced subtype-specific effect (Fig. 4a and 
supplementary Figure 2b).

To substantiate this finding, we cultivated PSN1 
(QM), PaTu8988T (QM), and PaTu8988S (classical) cells 
in DMEM medium with 5  mM glucose and 2  mM glu-
tamine without media change for 24–48 to 72–96  h. 
Glucose and lactate concentrations in the media were 
measured at given time points. With time, glucose con-
centration in the media decreased, and lactate increased 
(0–72  h), as expected due to glucose consumption and 
lactate production and accumulation. Once the glucose 
was consumed from the medium (approx. after 72  h in 
PaTu8988T/PSN1 cells), lactate concentration in the 
media decreased, indicating that in the absence of other 
resources, PDAC cells start consuming self-produced 
lactate (supplementary Figure 2c).

We also challenged the detected changes in glycolysis 
and lactate metabolism with the inhibitor of lactate dehy-
drogenase GNE-140 and followed the concentration-
dependent inhibition of metabolic activity in cells via 
CellTiter-Glo assay (Fig. 4b). GNE-140 treatment indeed 
induced a decrease in cell viability especially in the QM 
cell lines, being most effective in PSN1, MIAPaca2, and 
PaTu8988T cells. PDCs were in general less sensitive to 
GNE-140, and the observed inhibitory effects were, as 
expected from Seahorse lactate supplementations assays, 
not subtype dependent.

In conclusion, PDAC cells, regardless of subtype, not 
only actively produce and excrete glycolytically pro-
duced lactate but also actively use it potentially as an 
oxidative fuel. This phenomenon is more pronounced in 
QM than in classical PDAC cell lines and is exposed to 
specific metabolic targeting with lactate dehydrogenase 
inhibitors.

Hyperpolarized magnetic resonance spectroscopy 
of [1‑13C]pyruvate and [1‑13C] lactate identifies highly 
glycolytic tumors
Pharmacological inhibition suggested efficacy of GNE-
140 in glycolytic cells arguing for the need of unequivocal 
identification of highly glycolytic PDACs for successful 
metabolic targeting. However, detection of dominant 
metabolic pathways driving tumor phenotypes remains 
a highly challenging task. Fluorodeoxyglucose (18F-FDG) 
positron emission tomography (PET) is clinically estab-
lished method for tumor detection based on high glucose 
uptake into the cancer. However, 18F-FDG-PET detects 
only the very first step of glycolysis since 18F-FDG gets 
phosphorylated by the first glycolytic enzyme hexokinase 
or glucokinase and does not enter the further metabolic 
processing. Thus, FDG-PET detects the glucose trapping 
in the cell, rather than the real glycolytic activity of the 
tumor. We sought to evaluate the last step of glycolysis, 
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Fig. 3 Functional glycolysis evaluation in PDAC cells. a Survival analysis of PDAC patients according to SLC16A3 (MCT4) and SLC16A1 (MCT1) gene 
expression. Data from www. prote inatl as. org. Patients with higher MCT4 and MCT1 expression present worse survival. b Immunohistochemistry 
for MCT1 and MCT4 on patient FFPE PDAC samples emphasizing MCT4 and MCT1 expression on both cancer and stromal cells with prominent 
MCT4 expression in cancer and MCT1 expression in stroma cells. Scale bar, 100 µm. c SLC16A1 (MCT1) and SLC16A3 (MCT4) gene expression in 
patient bulk PDAC samples (n = 204; 116 QM, 88 classical) emphasizing higher expression of SLC16A3 than of SLC16A1. SLC16A3 is also significantly 
highly expressed in QM than in classical human PDAC bulk samples. P‑value calculated by Student’s T‑test (unpaired, two sided). d Multiplexed 
immunofluorescence staining of MCT4 (green), cytokeratin 81 (KRT81, QM marker—yellow), and pan‑cytokeratin (PANCK, cancer cell marker—red) 
on n = 6 patient PDAC FFPE samples. White arrows indicate overlapping MCT4 and KRT81 signals. Scale bar: 10 µm. Right graph: quantification of 
respective populations in 6 PDAC samples by halo. A total of 30–50% of KRT81 + cancer cells are also MCT4 positive; among KRT81 − cancer cells, 
less than 20% are also positive for MCT4. Populations are determined in the same sample; one line indicates one patient

http://www.proteinatlas.org
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pyruvate to lactate conversion, and explored HP-MRS 
with [1-13C]pyruvate and [1-13C]lactate in PDAC in an 
in  vivo approach. For this purpose, rats were subcuta-
neously implanted with glycolytic QM PSN1 or classical 
HPAC PDAC cell lines. Consistent with the respective 
molecular subtype, PSN1 tumors presented an undif-
ferentiated mesenchymal histology, while HPAC tumors 
showed a more differentiated epithelial tumor (supple-
mentary Figure 3a). Once the tumors reached a minimal 
size of 5 × 5 mm, metabolic spectroscopy was performed. 
HP-[1-13C]pyruvate was i.v. injected into the tail vein, 
and intra-tumoral accumulation of HP-[1-13C]lactate was 
followed in real time. Using MRS, significantly more HP-
[1-13C]lactate was detected in PSN1 compared to HPAC 
tumors, supporting higher 13C label exchange between 
pyruvate and lactate specifically in PSN1 tumors (Fig. 5 a 
and b, supplementary Figure 3b).

To evaluate whether lactate is imported and used by 
tumors in  vivo as observed in  vitro in Seahorse experi-
ments, we also performed the reverse experiment and 
intravenously injected HP-[1-13C]lactate in PSN1 and 
HPAC tumor rats in vivo. High HP-[1-13C]lactate uptake 
and intratumoral HP-[1-13C]pyruvate were clearly 
detected in PSN1 compared to very low HP-[1-13C]pyru-
vate signal in HPAC xenografts (Fig.  5c, supplementary 
Figure  3b). Accordingly, significantly higher peak area 
(PA) PApyr/PAlac ratios were measured for PSN1 than 
HPAC tumors (Fig. 5d).

Taken together, highly glycolytic PSN1 xenografts 
could readily be discriminated based on high HP-[1-13C]
pyruvate to HP-[1-13C]lactate interconversion observed 
in HP-MRS.

Lactate dehydrogenase (LDH) enzymatic activity meas-
ured ex  vivo after the spectroscopy experiment in snap 

Fig. 4 Lactate is used as oxidative fuel in PDAC cells. a Schematic representation of the performed Seahorse assay. Cells were cultivated in “basal” 
medium (no glucose, no glutamine) or in “basal” medium supplemented with 10 mM sodium‑L‑lactate (“basal + lactate”) for 7 h in total, and OCR 
levels are measured. Ratios among OCR values measured for “basal + lactate” and “basal” only media are calculated and presented. Ratio above 1 
(dotted line) indicates increase in OCR after lactate application. Presented are mean ratios + SD values of minimum 2 independent experiments, 
at least 3 technical replicates per cell line/per condition/per experiment. P‑values calculated by the Mann–Whitney test. b Dose–response curves 
of cell lines and PDCs to LDH inhibitor GNE‑140. Presented are mean dose–response curves and IC50 values of two independent experiments; 
3 technical replicates per concentration/cell line/experiment were performed. Stronger response observed in QM than in classical cell lines. No 
differences in response rate among QM and classical PDCs
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frozen tissues was also higher in PSN1 compared to 
HPAC tumors (Fig. 5e) consistent with the in vivo find-
ing. We further confirmed the highly glycolytic nature 
of rat PSN1 tumors by immunohistochemical analy-
sis of glycolytic markers HIF1A and MCT4 in rat PSN1 

and HPAC xenografts used in MRS experiments. MCT4 
showed the typical membrane-associated expression in 
cancer cells in both xenografts, with only slightly stronger 
staining intensity in PSN1 than in HPAC tumors (Fig. 5f ) 
but not prominently different. Intriguingly, staining for 

Fig. 5 Magnetic resonance spectroscopy (MRS) of HP‑[1‑13C]pyruvate and HP‑[1‑13C]lactate interconversions in PSN1 (QM) and HPAC (classical) 
PDAC xenografts in rats. a Left to right: schematic presentation of HP‑[1‑13C]pyruvate i.v. injection into rats with xenografted PSN1 and HPAC 
tumors, T2‑weighted sagittal anatomical image (scale bar = 1 cm) of a rat bearing a subcutaneous tumor, and graphs demonstrating signal intensity 
time courses of HP‑[1‑13C]pyruvate and HP‑[1‑13C]lactate measured intratumorally in PSN1 (left) and HPAC (right) rat xenografts. The HP‑[1‑13C]
lactate curve (orange) is higher in PSN1 than HPAC xenografts. b Calculated relative AUC ratios of HP‑[1‑13C]lactate to perfused HP‑[1‑13C]pyruvate 
showing higher conversion rate in PSN1 (n = 4; 1.325 ± 0.418) than in HPAC tumors (n = 5; 0.5349 ± 0.175). c Left to right, schematic presentation 
of HP‑[1‑13C]lactate injected into rats with xenografted PSN1 and HPAC tumors and signal intensity (SI) spectra of perfused HP‑[1‑13C]lactate (top) 
and detected HP‑[1‑13C]pyruvate (bottom) for PSN1 (n = 4) and HPAC (n = 3) tumors. The spectra have been summed over 10 time points covering 
maximum tumor enhancement and normalized to the lactate signal. Higher peak‑to‑background ratios (P/B 3.7–9.2) were observed in PSN1 tumors 
in comparison with P/B ratios in HPAC tumors (P/B 1.6–3.0). d Signal intensity quantification: PApyr/PAlac ratios are significantly higher in PSN1 
(1.49 ± 0.30, n = 4) than in HPAC tumors (0.51 ± 0.51, n = 3). PA, peak area. All P‑values in this figure calculated by Student’s T‑test (unpaired, two 
sided). e Ex vivo measurements of lactate dehydrogenase activity in imaged tumor sample. Higher activity in PSN1 (n = 5; 501,794 ± 341,920 U/L) 
than in HPAC tumors (n = 5; 62,796 ± 24,641 U/L) detected. f Representative immunohistochemistry for HIF1a and MCT4 in rat PSN1 (n = 4) and 
HPAC (n = 2) xenografted tumors. HIF1A‑specific nuclear staining was detected exclusively in PSN1 (QM) tumor. MCT4 staining intensity only lightly 
stronger in PSN1 than in HPAC tumor. Scale bar, 100 µM
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HIF1A, a major glycolytic regulator in cancers, was found 
exclusively in the PSN1 tumors with typical nuclear 
expression pattern in the cancer cells (Fig. 5f ). Next, we 
also analyzed HIF1A and MCT4 expression in murine 
xenografts of human PDAC cell lines (supplementary 
Figure  4). Indeed, MCT4 staining intensity was also 
only lightly stronger in the murine QM xenografts com-
pared to xenografts of classical cell lines. Specific nuclear 
HIF1A expression was limited to QM tumors only 
(PSN1, KP4, MIAPaCa2, PaTu8988T), and not detected 
in classical tumors (HPAFII, PaTu8988S, HUPT4, HPAC) 
(supplementary Fig. 4).

Discussion
The challenge in PDAC is its enormous therapy resist-
ance due to the evolution of aggressive cancer cells driven 
by oncogenic KRAS and loss of key tumor suppressors in 
a complex adapting microenvironment with various sign-
aling effectors and biophysical and hypoxic restraints. 
Despite considerable genetic homogeneity with regard to 
oncogenic KRAS as lead driver, many studies support the 
existence of several molecular PDAC subtypes, includ-
ing classical/progenitor and QM/squamous/basal-like 
and hybrid states with more or less pronounced subtype-
specific transcriptional programs [3–5]. Though indis-
putably present, functional aspects and phenotypic cues 
of the defined transcriptional subtypes are less described. 
One key feature of PDAC is the metabolic rewiring that 
may lead to phenotypic features not entirely captured 
by transcriptomic signatures. PDACs identified as tran-
scriptionally glycolytic show amplification of KRAS and 
MYC genes and are associated with a worse prognosis 
both in resectable and metastatic setting [11]. In patients, 
targeting of KRAS-MEK-MAPK pathway in a mono-
therapy approach only is not successful potentially due 
to activation of escape routes such as PI3K-AKT. How-
ever, blocking glycolysis with 2-deoxyglucose in combi-
nation with MAPK inhibitor is at least in mice effective 
and leads to apoptosis induction and reduction in tumor 
volume, suggesting high potential of this co-targeting 
[12]. Functional identification of patients with highly 
glycolytic PDACs can lead clinical decision-making and 
introduction of anti-glycolytic drugs in the clinic. In this 
work, we pursued two aims: (i) to evaluate whether the 
presence of glycolytic transcripts is indeed translated 
into operable glycolysis in PDAC QM subtype and (ii) 
offer a noninvasive imaging-based approach for detection 
of highly glycolytic tumors. We focused this analysis on 
patient-derived model systems including PDX and PDCs 
to value the molecular and metabolic heterogeneity in 
primary PDAC model systems. Furthermore, all our met-
abolic assays are performed under supplementation with 

physiological levels of glucose (5 mM), thus omitting the 
metabolic artifacts that can be caused by the usage of 
typical high glucose media.

Gene expression analysis in four different model sys-
tems (cell lines, PDC, PDX, and bulk tissue samples) 
indeed identified glucose metabolism/glycolysis/hypoxia/
MYC targets as dominating metabolic transcripts of the 
QM subtype. This is in line with the previously observed 
“glycolytic” subtype in mesenchymal PDAC cell lines [22] 
and the recently reported “glycolytic” transcriptional 
PDAC subtypes in patients [11]. However, glycolysis was 
not unambiguously functionally dominant in all cells of 
QM subtype, being cell lines or primary. In functional 
assays, we observed notable heterogeneity in metabolic 
behavior especially in patient-derived cells. We found 
active functional glycolysis in single representatives of the 
QM subtype, such as PSN1 and PDC69 cells. In Seahorse 
assays, these cells demonstrated high ECAR to OCR 
ratios, suggesting that cell intrinsic energy metabolism 
relies rather on glycolysis than on OXPHOS. It should 
however be noted that Seahorse assays evaluate ECAR 
and OCR values in in  vitro conditions and are highly 
dependent on cell culture features such as current cellu-
lar density, growth pattern, cell cycle, and current mito-
chondrial number [26] and should be interpreted only 
as indication of the cellular energetic status. Glycolytic 
energetic status of PSN1 and PDC69 correlated well with 
high gene expression of the lactate producer and trans-
porters LDHA and MCT1/4, respectively, supporting the 
translation of transcripts in active glucose metabolism. 
Interestingly, HIF1A, a major transcriptional regulator 
of glycolysis and cellular response to hypoxia [23], was 
also well expressed in the identified glycolytic cells here 
grown in typical in  vitro normoxic conditions, support-
ing intrinsic gene expression programs well preserved 
in QM cells. Furthermore, by using multiplex immuno-
fluorescence approach, we observed MCT4 expression in 
KRT81-positive cells in human PDAC samples, further 
suggesting correlation of QM subtype and glycolytic phe-
notype. In line with our observations, MCT4 has already 
been suggested as marker of glycolytic PDACs with poor 
prognosis [24].

The heterogeneity observed in our results suggests 
that rigid transcriptome-based classification of PDAC 
subtypes may not be sufficient as the basis for clinical 
decisions regarding metabolic targeting approaches. 
Rather, individual PDACs may often present a con-
tinuum of different metabolic states that are more 
or less phenotypically presented depending on vari-
ous cell-autonomous and non-cell-autonomous cues. 
Hybrid PDAC subtypes with transcriptomic signatures 
in between the classical and QM/basal-like states have 
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been highlighted recently [4, 11]. Similar to our study, a 
correlation of molecular cues and functional oxidative 
phosphorylation was very recently reported for PDAC 
cells [27]. The authors emphasize on metabolic het-
erogeneity and flexibility and shifts from OXPHOS or 
glycolysis when necessary, supporting the existence of 
plastic metabolic states dependent on the environmen-
tal challenges. It is reasonable to assume that among 
PDAC cells, a whole spectrum of weakly to highly gly-
colytic QM PDAC cells exists. The exclusive depend-
ency on the one or the other metabolic pathway is an 
unlikely scenario. However, individual tumors with 
high activity of specific metabolic pathway may exist, 
and their identification will be the key to successful tar-
geting. We show here that both PSN1 and HPAC xeno-
grafted tumors import HP-[1-13C]pyruvate, however 
show different conversion rates to HP-[1-13C]lactate. 
Glycolytic PSN1 tumors were readily detectable by HP-
MRS due to higher 13C-label exchange among pyruvate 
and lactate, indicating high activity of the last glyco-
lytic enzyme LDH and high intratumoral pyruvate to 
lactate conversion. Similarly, in breast cancer patients, 
high HP-[1-13C]pyruvate to HP-[1-13C]lactate conver-
sion rates identified strongly glycolytic aggressive tri-
ple negative breast cancer with high HIF1a and MCT1 
tissue expression [28] and high-grade lesions in pros-
tate cancer with increased MCT4 expression [29]. This 
approach is already being used in personalized therapy 
monitoring in prostate and brain cancer [30, 31]. Addi-
tionally, alanine-to-lactate signal ratio upon injection 
of HP-[1-13C]pyruvate has also been shown to distin-
guish well between preneoplastic lesions and PDAC 
in mouse models [32, 33]. In our study, we focused on 
potentials of imaging pyruvate-to-lactate interconver-
sions for detection of a subpopulation of highly glyco-
lytic PDACs.

Furthermore, we also confirmed in  vivo that HP-
[1-13C]lactate enters the PSN1 and HPAC tumors, with 
however lower uptake in classical HPAC xenografts. As 
a result, we clearly detected HP-[1-13C]pyruvate in PSN1 
tumors and very low levels in HPAC tumors, what sug-
gests potential subsequent use of pyruvate in the TCA 
cycle and high metabolic flexibility of PSN1 tumors 
for pyruvate and lactate as oxidative fuels. Lactate has 
recently been considered as one of the important actors 
in tumor metabolism [34]. Tumors use the advantage of 
lactate being the second most abundant metabolite in 
the systemic circulation and readily feed the TCA cycle 
with pyruvate generated from lactate in a reverse lactate 
dehydrogenase reaction [25, 35, 36]. Indeed, in Seahorse 
experiments, we also observed OXPHOS activation with 
lactate in PDAC cells, especially in the QM cell lines. 

However, it should be noted that Seahorse experiments 
were performed under deprivation of main OXPHOS 
fuels, glucose and glutamine. This may potentially lead to 
overemphasis of lactate usage in OXPHOS under these 
in vitro conditions.

We hypothesize that the hypoxic microenvironment 
of the tumor favors the epithelial-to-mesenchymal 
transformation (EMT) of the cancer cells and appear-
ance of the glycolytic QM tumors. These tumors poten-
tially adapt their oxidative metabolism to fuels which 
are then locally produced, either by themselves or by 
neighboring cancer, stromal, or immune cells. In some 
cases, this will likely be through oxidation of lactate, 
although lactate oxidation by itself may not be a suffi-
cient marker for the classical to QM transition.

Our HP-MRS experiments provide evidence for the 
concept that PDACs with high reliance on glycolysis 
are potentially detectable via HP-[1-13C]pyruvate/lac-
tate MRS imaging (MRSI) in clinical practice. Thus, 
identification of highly glycolytic, aggressive PDACs 
by HP-[1-13C]pyruvate and HP-[1-13C]lactate MRSI 
may be used to guide and monitor tumor treatment 
with anti-glycolytic therapies. The limitation for clini-
cal translation of this method is the low pyruvate SNR 
measured after the HP-lactate injection, leading to an 
uncertainty on the performed quantifications. There-
fore, future improved methods of higher sensitivity of 
the HP-[1-13C]lactate experiment such as employ-
ment of cryogenically cooled receiver coils would be of 
high interest and may even allow to quantify metabolic 
fluxes within the different subtypes of PDAC.

Conclusion
In contrast to biopsy-based tumor characterization, 
metabolic imaging allows dynamic evaluation of the 
whole tumor limiting sampling bias and addressing 
tumor heterogeneity [37]. Although likely not all QM 
tumors are potentially extremely glycolytic, noninva-
sive detection of highly glycolytic PDACs by HP-[1-13C]
pyruvate/lactate MRS is one of the first methods for 
successful individual metabolic approaches.
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