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Abstract

Background: Patient-derived bulk expression profiles of cancers can provide insight into the transcriptional
changes that underlie reprogrammed metabolism in cancer. These profiles represent the average expression
pattern of all heterogeneous tumor and non-tumor cells present in biopsies of tumor lesions. Hence, subtle
transcriptional footprints of metabolic processes can be concealed by other biological processes and experimental
artifacts. However, consensus independent component analyses (c-ICA) can capture statistically independent
transcriptional footprints of both subtle and more pronounced metabolic processes.

Methods: We performed c-ICA with 34,494 bulk expression profiles of patient-derived tumor biopsies, non-cancer
tissues, and cell lines. Gene set enrichment analysis with 608 gene sets that describe metabolic processes was
performed to identify the transcriptional components enriched for metabolic processes (mTCs). The activity of these
mTCs was determined in all samples to create a metabolic transcriptional landscape.

Results: A set of 555 mTCs was identified of which many were robust across different datasets, platforms, and
patient-derived tissues and cell lines. We demonstrate how the metabolic transcriptional landscape defined by the
activity of these mTCs in samples can be used to explore the associations between the metabolic transcriptome
and drug sensitivities, patient outcomes, and the composition of the immune tumor microenvironment.

Conclusions: To facilitate the use of our transcriptional metabolic landscape, we have provided access to all data
via a web portal (www.themetaboliclandscapeofcancer.com). We believe this resource will contribute to the
formulation of new hypotheses on how to metabolically engage the tumor or its (immune) microenvironment.
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Background
Reprogrammed energy metabolism is a hallmark of cancer
[1]. Metabolic reprogramming supports the survival, prolif-
eration, and maintenance of cancer cells by ensuring suffi-
cient biosynthetic capacity, redox potential, and energy [2].

Additionally, metabolic reprogramming enables tumor cells
to adapt to challenging microenvironmental conditions,
such as hypoxia and low nutrient availability, and become
resistant to cancer treatment [3]. Moreover, metabolic re-
programming of cancer cells influences the composition
and function of immune cells present in the tumor micro-
environment (TME), affecting the anti-cancer immune re-
sponse to immunotherapy [4, 5].
Metabolic dependencies have been successfully exploited

to treat cancer, as illustrated by the efficacy of antifolate
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drugs such as methotrexate [6]. More recent knowledge
about cancer cell metabolism has resulted in novel thera-
peutic targets, such as glutaminase and mutant forms of
IDH1/2, currently being evaluated in pre-clinical models
and phase I/II clinical trials [7, 8]. However, adverse effects
or lack of effectiveness still hamper the clinical develop-
ment of most metabolic therapies. A potential reason is that
many metabolic targeting drugs are developed based on in-
sights derived from model systems of human cancer, which
do not fully reflect the complexities of cancer in humans
[9]. In particular, cell line models lack the immune cells
present in the TME and often require specific metabolic
conditions to grow [10, 11].
Evidence is emerging that transcriptional changes play

an important role in the metabolic plasticity of cancer
cells: gene expression can influence metabolite levels,
and metabolic changes can result in altered gene expres-
sion [12, 13]. The availability of large numbers of gene
expression profiles—from a broad spectrum of cancer
types—in the public domain provides a unique oppor-
tunity to study metabolic reprogramming in patient-
derived cancer tissue.
Almost without exception, these gene expression pro-

files were generated from complex biopsies that contain
tumor cells and cells present in the TME (e.g., immune
cells). Accordingly, these profiles represent the average
gene expression pattern of all cells present in the biopsy.
Therefore, detecting metabolic processes relevant to
cancer biology in expression profiles from complex biop-
sies can be challenging, especially when their transcrip-
tional footprints (TFs) are subtle and concealed by more
pronounced TFs from other biological processes or ex-
perimental artifacts.
In the present study, we used consensus independent

component analysis (c-ICA), a statistical method capable
of separating the average gene expression profiles gener-
ated from complex biopsies into additive transcriptional
components (TCs). This enabled us to detect both the
pronounced and more subtle transcriptional footprints
of metabolic processes. We performed c-ICA with
32,409 human gene expression profiles obtained from
the Gene Expression Omnibus (GEO) and The Cancer
Genome Atlas (TCGA), as well as 2085 gene expression
profiles obtained from the Cancer Cell Line
Encyclopedia (CCLE) and the Genomics of Drug Sensi-
tivity in Cancer (GDSC) portal [14–16]. Comprehensive
characterization of the TCs with gene set enrichment
analysis (GSEA) identified TCs associated with metabolic
processes, i.e., metabolic TCs (mTCs). This enabled us
to create a metabolic landscape showing the activity of
these mTCs in all 34,494 samples. We demonstrate how
this landscape (www.themetaboliclandscapeofcancer.
com) can be used to explore the associations between
the metabolic transcriptome and drug sensitivities,

patient outcomes, and the composition of immune cells
in the TME.

Methods
Data acquisition, data preprocessing, and c-ICA
A detailed description of the methods is available in
the Supplementary Methods. The methods for data
acquisition, preprocessing of the four datasets GEO,
TCGA, GDSC, and CCLE, and c-ICA were published
previously [17].

Identification of TCs enriched for metabolic processes
Gene sets defining all known types of metabolic pro-
cesses were selected from gene set collections obtained
from the Molecular Signatures Database (MSigDb ver-
sion 6.1): BioCarta, Gene Ontology – Biological Process
(GO-BP), Gene Ontology – Molecular Function (GO-
MF), KEGG, and Reactome (see Supplementary Methods
for details on selection process). To identify transcrip-
tional components enriched for metabolic processes,
gene set enrichment analysis (GSEA) was performed
using the selected metabolic gene sets. Enrichment of
each metabolic gene set was tested according to the
two-sample Welch’s t-test for unequal variance between
the metabolic set of genes, and Welch’s t statistic was
transformed to a Z-score to allow comparison between
gene sets.
To reduce the redundancy in gene sets from different

gene set collections, consensus clustering was performed
set-wise on the GSEA data for the GEO, TCGA, CCLE,
and GDSC datasets. Consensus clustering was performed
using the ConsensusClusterPlus-package (v1.51.1) within
R, using the default hierarchical clustering algorithm and
Pearson correlation distance, a maximum number of clus-
ters (maxK) of 150, 2000 resamplings (reps), with 80% row
and 80% column resampling (pFeature and pItem, re-
spectively). The optimal number of clusters (k) was deter-
mined as the k at which the relative change in area under
the cumulative distribution function (CDF) curve was
minimized (< 0.01). This resulted in a k of 50 clusters
(Supplementary Fig. 1).
The 50 clusters of gene sets were subsequently used to

select transcriptional components based on their enrich-
ment for metabolic processes. Per gene set cluster, the
three TCs with the highest absolute enrichment score
for any gene set in that cluster were selected. We also
selected the three TCs with the highest absolute mean
enrichment score for all gene sets in that cluster. These
selected TCs were then referred to as metabolic tran-
scriptional components (mTCs).
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Pair-wise gene-level correlations of mTCs between
datasets
To correlate two mTCs of different datasets, the subset
of genes with an absolute weight higher than 3 in two
mTCs was selected. Then, the overlap between these
two sets of top genes was determined. Using the gene
weights of the overlapping genes in both mTCs, pair-
wise correlations were calculated. Specifically, Spearman
correlations were performed using the pspearman-pack-
age (v0.3-0) in R, with a t-distribution approximation to
determine the P-value. As the number of genes with an
absolute weight above 3 was different for every mTC,
the size of the overlap in genes between two mTCs
changed. The significance of the Spearman correlation
found between two mTCs, therefore, was dependent on
the number of overlapping genes. Hence, the signifi-
cance of the number of overlapping genes between
mTCs should be determined. To this end, for a pair of
mTCs, two sets of random gene identifiers were selected
from all possible gene identifiers. The amount of ran-
domly selected genes per set corresponded to the num-
ber of genes with a weight of > 3 in both mTCs.
Subsequently, the overlap in gene identifiers between the
two random sets of gene identifiers was determined. By
repeating this 10,000 times, the chance of finding a given
overlap between two sets of genes could be determined.
Ultimately, mTCs were said to be concordant when

their correlation was > 0.5, with a P-value < 0.05, given
that there was a significant overlap in genes (P-value of
overlap < 0.05).

Clustering of metabolic transcriptional components,
genes, and samples
For each of the four datasets, the mixing matrix (MM)
containing activity scores was clustered both on samples
and mTCs. To this end, hierarchical clustering was per-
formed using ward-D2 as the method and 1-cor(data) as
the distance function. Heatmaps were created using R’s
gplots package (v3.0.1). Based on the MM clustering for
every dataset, metabolic subtypes were defined. To de-
termine the sizes of clusters of samples that would make
up a metabolic subtype, the dendrograms resulting from
hierarchical clustering of the samples were systematically
cut at dissimilarity values ranging from 0.0 to 8.0 with
increments of 0.2. For each of the four datasets GEO,
TCGA, CCLE, and GDSC, the cutoff was chosen at the
dendrogram height at which the smallest cluster reached
a size of 50 samples.

CIBERSORT
Relative and absolute immune fractions for 22 immune
cell types were estimated for all samples in GEO and
TCGA datasets using the CIBERSORT algorithm run-
ning with default parameters, 1000 permutations, and

selecting “absolute nosumto1” as output. This output
was then associated with the activity of the mTCs using
Spearman correlation.

Statistical analyses
Univariate distant relapse-free survival (DRFS) analyses
on breast cancer samples were performed using a Cox
regression model through survminer (v0.4.3) and sur-
vival (v2.43-3) packages in R. Confidence intervals were
set at 0.95. Significance was tested through the log rank
test. Pearson correlations were performed in R using the
cor.test()-function from the stats package (v.3.5.1).
Spearman correlations and the corresponding exact P-
values were calculated using the pspearman package
(v0.3-0) in R, with a t-distribution as an approximation.

Approximation of batch effects and tissue specificity of
mTCs
First, the explained variance of every component from
the perspective of a sample (as a percentage) was esti-
mated using the squares of the mixing matrix weights of
a sample divided by the sum of the squares. This ex-
plained variance matrix for samples was then summa-
rized into a mean explained variance for studies by
summarizing samples belonging to the same study
(through the annotated GEO series accession number or
TCGA tissue source site code). In the supplementary fig-
ures, only the highest explained variance available for
any study is given. Similarly, tissue specificity was ap-
proximated by calculating the mean explained variance
for tissue types by summarizing samples belonging to
the same tissue subtype.

Results
A subset of transcriptional components is associated with
metabolic processes
Previously, we collected gene expression data from four
databases: the Gene Expression Omnibus (GEO dataset,
n = 21,592), The Cancer Genome Atlas (TCGA dataset,
n = 10,817), the Cancer Cell Line Encyclopedia (CCLE
dataset, n = 1067), and the Genomics of Drug Sensitivity
in Cancer (GDSC dataset, n = 1018) (Fig. 1A), totaling
34,494 samples [17]. Overall, 28,200 expression profiles
originated from patient-derived complex tissue cancer
biopsies, 4209 from complex tissue biopsies of non-
cancerous tissue, and 2085 from cell lines. The samples
in these four databases encompass 89 cancer tissue types
and subtypes and 19 non-cancerous tissue types. For
GEO and CCLE datasets, the expression profiles were
generated with Affymetrix HG-U133 Plus 2.0. Expres-
sion profiles within the GDSC dataset were generated
with Affymetrix Human Genome U219, and TCGA pro-
files were generated with RNA sequencing.
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Fig. 1 (See legend on next page.)
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Gene expression profiling measures the net expression
level of individual genes, thus reflecting the integrated
activity of underlying regulatory factors, including ex-
perimental, genetic, and non-genetic factors. To gain
insight into the number and nature of these regulatory
factors and their effects on gene expression levels, i.e.,
their transcriptional footprints, we previously performed
consensus independent component analysis (c-ICA) on
each of the abovementioned four datasets separately
[17], resulting in four sets of transcriptional components
(TCs). In every TC, each gene has a specific weight. This
weight describes how strongly and in which direction
the underlying transcriptional regulatory factor influ-
ences the expression level of that gene. c-ICA also pro-
vides a “mixing-matrix” per dataset, in which each
column corresponds to a TC and each row corresponds
to a sample. Values in the mixing matrix are interpreted
as measurements of the activity of the TCs in an individ-
ual sample; we refer to these as “activity scores.” Ultim-
ately, the analysis yielded 855, 1383, 467, and 466 TCs
for GEO, TCGA, CCLE, and GDSC datasets, respectively
(Fig. 1A).
Gene set enrichment analysis (GSEA) with 608 gene

sets that describe metabolic processes was performed to
identify TCs enriched for metabolic processes. The gene
sets were selected from the gene set collections Biocarta
(n = 7), the Kyoto Encyclopedia of Genes and Genomes
(KEGG, n = 64), the Gene Ontology Consortium (GO, n
= 508), and Reactome (n = 29) within the Molecular Sig-
natures DataBase (MSigDB, v6.1; for the systematic se-
lection strategy, see the “Methods” section). We
performed consensus clustering on the enrichment
scores of the 608 metabolic gene sets to identify poten-
tial biological redundancy in the metabolic gene set defi-
nitions (Supplementary Fig. 1). This resulted in 50
clusters of gene sets, which can be ascribed to different
metabolic themes (Additional File 1). Based on these 50
enrichment clusters, 132 (GEO), 151 (TCGA), 136
(CCLE), and 136 (GDSC) mTCs were defined (Fig. 1A,
B; see the “Methods” section for the systematic selection
strategy). These mTCs represent the metabolic tran-
scriptional footprints present in our broad set of sam-
ples, i.e., patient-derived samples, cancer cell line

samples, and non-cancer samples. Every mTC is there-
fore enriched for at least one metabolic process, but it is
also possible that multiple (possibly co-regulated) meta-
bolic processes are represented by a single mTC. This is
because the nature and effect of every regulatory factor
that underlies a captured transcriptional footprint are
different. Consequently, some mTCs might capture the
transcriptional footprint of a metabolic process that is
co-regulated with a non-metabolic process. Moreover, a
metabolic process might even be represented by multiple
mTCs, which are all differently active in specific tissue
samples. The number of metabolic gene sets that are
enriched per mTC is shown in Supplementary Fig. 2 and
Additional File 1.
Some of the identified mTCs may capture the tran-

scriptional footprints of experimental factors as well.
Therefore, we investigated how much of the variance in
activity scores of each mTC could be explained by ex-
perimental batches. For GEO mTCs, experimental
batches were determined by the provided GSE identifiers
(i.e., experiment series identifiers). For TCGA mTCs, ex-
perimental batches were determined by the tissue source
site of samples (e.g., 2H, Erasmus MC, esophageal car-
cinoma). We observed that 12/132 GEO mTCs showed
a potential putative batch effect with more than 10% ex-
plained variance (Supplementary Fig. 3A). However, six
of the 12 GEO mTCs with a putative batch effect also
explained more than 10% of the variance in the gene ex-
pression of samples belonging to a single tissue subtype
(Supplementary Fig. 3A). One of the 151 TCGA mTCs
showed a putative batch effect with 20.5% explained
variance (Supplementary Fig. 3B). This mTC, TCGA
mTC 43, also showed tissue specificity for thymoma, a
tissue type that is not present in the GEO dataset. These
observations might indicate that the mTCs showing a
putative batch effect in fact describe tissue-specific biol-
ogy of tissues that are only present in a single experi-
ment in our dataset.

Metabolic TCs are robust across different datasets and
platforms
Pair-wise comparison of mTCs between datasets, based
on gene weights, showed that 91–99% of mTCs per

(See figure on previous page.)
Fig. 1 Identification of metabolic transcriptional components (mTCs). A Workflow for identification of mTCs. Consensus independent component
analysis (c-ICA) is applied to identify transcriptional components (TCs). Subsequent systematic selection of TCs enriched for metabolic processes
resulted in 132, 151, 136, and 136 mTCs for the GEO, TCGA, CCLE, and GDSC datasets, respectively. B Hierarchically clustered heatmaps showing
the enrichment of the 608 metabolic gene sets of mTCs identified in the GEO, TCGA, CCLE, and GDSC datasets. C Scatter plot showing absolute
Spearman correlation coefficients (x-axis) versus the percentage of overlapping top genes (genes with absolute weight > 3) between GEO mTCs
and TCGA mTCs (y-axis). Only significant pair-wise correlations (with P-values < 0.05) are shown. Colored dots show the correlations > 0.5, the size
of the dots represents the P-value of these Spearman correlations. The transparency of the dots is the same for all data points. Darker dot colors
therefore mean that multiple data points are overlapping. D Venn diagram quantifying the overlap of mTCs between each dataset based on their
pair-wise correlations. Two mTCs are counted as shared between datasets, when they have a high absolute Spearman correlation (|rs| > 0.5).
Three groups of (shared) mTCs, mentioned in the text, are designated
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dataset were highly correlated (|rs| ≥ 0.5, P-value < 0.05
as a threshold) with at least one mTC identified in an-
other dataset (Fig. 1C, D and Supplementary Fig. 4A-G).
This indicates that most of the mTCs were cross-
platform and cross-dataset robust.
Given the selected correlation threshold (|rs| ≥ 0.5, P-

value < 0.05), 72 mTCs could be identified with a highly
similar gene weight pattern in all four datasets (Fig. 1D).
Thus, these mTCs capture a transcriptional footprint
that is very similar in both patient-derived complex bi-
opsies and cell lines. As cell lines lack a TME, these 72
mTCs were considered to capture metabolic processes
that reflect tumor cell characteristics. Six GEO mTCs
were identified that were highly correlated with TCGA
mTCs, but not highly correlated with any CCLE or
GDSC mTC (Fig. 1D). These mTCs, therefore, might
capture transcriptional footprints that are specific for
complex biopsies obtained from patient-derived cancer
tissue and may originate from the TME or capture a
transcriptional footprint from tissue only present in the
GEO and TCGA datasets. One pair of mTCs was identi-
fied with a gene weight pattern that was highly similar in
CCLE and GDSC datasets only, capturing a metabolic
transcriptional footprint that could only be found in cell
line models (Fig. 1D).

Metabolic TCs identify new genes potentially involved in
metabolic processes
Among the “top” genes in every mTC—defined as the
genes with an absolute weight of > 3 in an mTC—many
genes were a member of the 608 metabolic gene sets
(Fig. 2A, B, Supplementary Fig. 5). However, even for
the mTCs with the absolute highest gene set enrichment
scores for a metabolic gene set, at least 20% of top genes
were not members of any of the metabolic gene sets. Be-
cause these genes were nevertheless part of an mTC,
they may be potentially involved in the metabolic pro-
cesses that showed enrichment.
For example, two strongly correlated mTCs, GEO

mTC 54 and TCGA mTC 127 (|rs| = 0.77), both showed
enrichment for glycolysis and the metabolic process of
ADP (Fig. 2C, D, Additional File 1). GEO mTC 54 con-
tained 262 top genes, of which 155 (59.1%) were also
among the top genes in TCGA mTC 127. Both mTCs
contained multiple top genes that are known targets of
the HIF-1 complex and genes previously found to be
part of a hypoxic signature [18]. Several top genes of
both GEO mTC 54 and TCGA mTC 127 (e.g.,
FAM162A, C4orf3, C4orf47, and ANKRD37) are cur-
rently not a member of any of the 608 metabolic gene
sets. However, these data suggest that these four genes
are involved in glycolysis and are possibly hypoxia-
related. Indeed, several studies have indicated that at

least FAM162A and ANKRD37 are regulated by the
transcription factor HIF-1α [19, 20].
As a second example, we investigated two highly cor-

related mTCs, GEO mTC 11 and TCGA mTC 141 (rs =
0.68), which showed enrichment for mitochondrial
metabolic processes such as oxidative phosphorylation
and the TCA cycle (Fig. 2E, F, Additional File 1). GEO
mTC 11 contained 427 top genes, of which 270 (63.2%)
were among the top genes in TCGA mTC 141. In these
two mTCs, C6orf136 and IMMT are examples of top
genes currently not assigned to any of the 608 metabolic
gene sets. C6orf136 and IMMT were previously identi-
fied in functional mitochondria proteome profiles [21].
These results suggest that mTCs could assign metabolic
functions to genes currently not members of known
gene sets describing metabolic processes.

Clustering sample activity scores of mTCs reveal multiple
metabolic subtypes
To investigate the heterogeneity of the metabolic tran-
scriptome in a broad range of cancer subtypes, we hier-
archically clustered the mixing matrix provided by
consensus-ICA that contains the activity score of mTCs
in every sample (Fig. 3A, B and Supplementary Fig. 6A,
B). We selected the cutoff heights of the resulting den-
drograms so that every cluster—referred to as metabolic
subtype—contained at least 50 samples (Supplementary
Fig. 6C and D). This clustering analysis divided the
21,592 GEO samples into 67 metabolic subtypes with a
median of 276 samples per subtype (range 54–1252) and
the 10,817 TCGA samples into 58 metabolic subtypes
with a median of 167 samples per subtype (range 52–
536). For an overview of the metabolic subtypes and
their sample composition, see Supplementary Fig. 7, 8,
and Additional File 2. Two types of patterns emerged.
The first pattern consisted of tumor types with sam-

ples that belong to one dominant metabolic subtype. For
example, 102/133 (76.7%) of thyroid cancer samples in
the GEO dataset fell into one metabolic subtype (sub-
type 27, Supplementary Fig. 7, Additional File 2). Simi-
larly, 446/509 (87.6%) of thyroid cancer samples in the
TCGA dataset fell into metabolic subtype 43 (Supple-
mentary Fig. 8, Additional File 2). In line with the biol-
ogy of thyroid tissue, both GEO metabolic subtype 27
and TCGA metabolic subtype 43 were characterized by
high activity scores of mTCs enriched for thyroid hor-
mone metabolism (GEO mTC 64 and TCGA mTC 87;
Additional File 1).
The second pattern consisted of several tumor types

that were not characterized by a few dominant metabolic
subtypes. Instead, their samples were divided across
multiple metabolic subtypes. For example, the 3512
breast cancer samples in the GEO dataset were divided
across 33 metabolic subtypes (Fig. 3C). These metabolic

Leeuwenburgh et al. Cancer & Metabolism            (2021) 9:35 Page 6 of 15



subtypes did not follow the breast cancer classification
based on ER and HER2 receptor status, nor did they
align with the classification based on PAM50 molecular
subtypes (Fig. 3C, Additional Files 2 and 3). In line with
this observation in the GEO dataset, the 1100 breast
cancer samples in the TCGA dataset were also scattered
across 29 metabolic subtypes.
Several metabolic subtypes likewise contained samples

from multiple tumor types. For example, GEO metabolic
subtype 22 contained samples from 25 tumor types,

including 42 ovarian cancer samples (22% of all ovarian
cancer), 33 synovial sarcoma samples (97% of all synovial
sarcoma), and 15 Ewing’s sarcoma samples (58% of all
Ewing’s sarcoma; Supplementary Fig. 7 and Additional
File 2). GEO mTC 111 had the highest absolute median
activity score in GEO metabolic subtype 22 (Additional
File 2). This mTC showed enrichment for the metabol-
ism of nicotinamide adenine dinucleotide phosphate
(NADP) and genes involved in the activation of an in-
nate immune response (Additional File 1).

Fig. 2 Metabolic TCs identify new genes potentially involved in metabolic processes. A, B Scatterplots showing the highest metabolic gene set
enrichment score for every GEO (A) and TCGA (B) mTC (x-axis) versus the percentage of metabolically annotated genes among the top genes
(genes with absolute weight > 3) in those mTCs. The size of the dots corresponds to the absolute amount of metabolically annotated genes in
the corresponding mTC. The transparency of the dots is the same for all data points. Darker dot colors therefore mean that multiple data points
are overlapping. C, D Top genes in GEO mTC 54 and TCGA mTC 127. Text colored white shows the genes that are a member of at least one of
the 608 defined metabolic gene sets. Lines signify the genes that are the top genes in both GEO and TCGA mTCs. E, F Top genes in GEO mTC
11 and TCGA mTC 141
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These results show that the classification of samples
based on metabolic subtype yields different patterns than
current classification systems based on receptor status
or PAM50 subtypes in breast cancer.

Metabolic subtypes are associated with distant relapse-
free survival in breast cancer
We then investigated if metabolic subtypes could have
clinical relevance. We had previously collected distant
relapse-free survival (DRFS) data for 1207 breast cancer

samples [22]. As mentioned earlier, breast cancer sam-
ples in the GEO dataset were divided across 33 of the 67
metabolic subtypes. Of these 33 subtypes, eight con-
tained > 50 breast cancer samples with data available for
DRFS: subtypes 15, 16, 20, 31, 32, 33, 34, and 35. We
found that patients from breast cancer samples assigned
to metabolic subtypes 16 and 33 showed the best and
worst DRFS, respectively (P-value = 1.08 × 10−23, log-
rank test; Fig. 3D). Distributions of the standard prog-
nostic factors within these eight metabolic subtypes are

Fig. 3 Clustering activity scores of mTCs reveal multiple metabolic subtypes. A A total of 21,592 GEO samples were hierarchically clustered based
on the activity scores of mTCs and divided into 67 metabolic subtypes. B A total of 10,817 TCGA samples were hierarchically clustered based on
the mTC activity scores and divided into 58 metabolic subtypes. C Metabolic landscape of the subset of breast tissue samples in the GEO dataset.
Subtypes with DFS data that were selected for survival analysis are highlighted. Gray labels designate the tissue types that are present in other
datasets but are not present in the given dataset. D Distant relapse-free survival of breast cancer patients in the GEO dataset. Patient-derived
samples were stratified per metabolic subtype. Kaplan-Meier curves are shown with a confidence interval of 0.95
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presented in Additional File 3. Metabolic subtypes might
be correlated with standard factors such as age, p53 sta-
tus, and lymph node involvement, which can explain the
survival differences. Although the metabolic subtypes
might not be statistically independent prognostic factors
in breast cancer, their association with DRFS could be
helpful to understand the biology that is potentially driv-
ing breast cancer behavior.

The activity of mTCs is associated with drug sensitivity
The CCLE and GDSC databases contain the sensitivities
of cell lines to a large panel of drugs expressed as IC50

values. With a threshold of |rs| > 0.2, we found associa-
tions between the activity scores of 61 CCLE mTCs, 90
GDSC mTCs, and the IC50 values of 238 drugs (Add-
itional File 4).
For example, in the GDSC dataset, an increase in ac-

tivity score of GDSC mTC 3 was associated with a de-
crease in IC50 value of (i.e., increased sensitivity to)
nutlin-3a (|rs| = 0.42; Fig. 4A, B). Nutlin-3a targets the
p53 pathway through inhibition of MDM2. In line with
this, GDSC mTC 3 showed strong enrichment for genes
involved in the p53 pathway, with MDM2 ranked as the
second gene (Additional File 1). GDSC mTC 3 was
strongly correlated with CCLE mTC 4 (|rs| = 0.84), GEO
mTC 57 (|rs| = 0.79), and TCGA mTC 110 (|rs| = 0.74)
(Fig. 4D), suggesting that this mTC was captured in cell
line datasets as well as in the two patient-derived data-
sets. Indeed, an increase in activity score of CCLE mTC
4 was associated with a decrease in IC50 value of nutlin-
3a as well (|rs| = 0.25; Fig. 4E). Cell lines with wild-type
TP53 had a higher activity score of GDSC mTC 3 (Fig.
4C). Also, cell lines with wild-type TP53 had a higher ac-
tivity score of CCLE mTC 4 (Fig. 4F).
In another example, the activity score of GDSC mTC

18 was found to be associated with the IC50 values of
142 drugs (|rs| range 0.20–0.44; Fig. 4G). An increase in
the activity score of GDSC mTC 18 in a sample was as-
sociated with a higher IC50 value (i.e., increased resist-
ance) for 135 of these drugs, including the widely used
DNA synthesis-inhibiting antimetabolites 5-fluorouracil
(|rs| = 0.41) and methotrexate (|rs| = 0.38). GDSC mTC
18 was strongly correlated with CCLE mTC 28 (|rs| =
0.84), GEO mTC 35 (|rs| = 0.59), and TCGA mTC 58
(|rs| = 0.55), indicating that this mTC is also captured in
both cell line datasets and the two patient-derived data-
sets. CCLE mTC 28 was associated with a higher IC50

value (i.e., increased resistance) for 7 drugs including
topoisomerase inhibitors topotecan (|rs| = 0.35) and iri-
notecan (|rs| = 0.34) (Fig. 4H). In line with this, GDSC
mTC 18 was associated with increased resistance to
SN38, the active metabolite of irinotecan (|rs| = 0.21).
All four of the highly correlated mTCs were enriched for
genes involved in glutathione metabolism, the

metabolism of cellular ketones and xenobiotics, and
drug detoxification (Additional File 1). Specifically, genes
belonging to the aldo-keto reductase family 1 (AKR1)
were among the top genes in these mTCs. Previous
studies have reported a role for the glutathione system
in resistance to irinotecan and 5-fluorouracil [23], and
specifically, a role for the AKR1 family in resistance to,
e.g., methotrexate and irinotecan [24, 25]. In contrast,
we observed that an increased activity score of GDSC
mTC 18 was associated with a decrease in IC50 value
(i.e., increased sensitivity) for only seven drugs (|rs|
range 0.20–0.41; Fig. 4G). The drug with the highest
negative correlation was tanespimycin (17-AAG), an
Hsp90 inhibitor (|rs| = 0.41). An increased activity score
of CCLE mTC 28 was associated with a decrease in IC50

value for tanespimycin as well (|rs| = 0.26; Fig. 4H). A
direct link between the functions of glutathione and
Hsp90 in oxidative stress has been suggested, as well as
a relationship between tanespimycin sensitivity and
NQO1 expression, a gene coding for an enzyme reducing
quinones to hydroquinones that is involved in detoxifi-
cation [26, 27]. In line with these findings, we found that
the NQO1 gene is present near the top of GDSC mTC
18, CCLE mTC 28, GEO mTC 35, and TCGA mTC 58.
In a third example, increased activity of GDSC mTC

108 was associated with a lower IC50 value (i.e., in-
creased sensitivity) to the MEK inhibitor trametinib (|rs|
= 0.48) and a higher IC50 value (i.e., increased resistance)
to the histone deacetylase inhibitor vorinostat (|rs| =
0.46; Fig. 4I and Additional File 4). GDSC mTC 108 was
correlated with CCLE mTC 97 (|rs| = 0.32). Consistent
with the observation for GDSC mTC 108, we found that
increased activity of CCLE mTC 97 was associated with
a lower IC50 value (i.e., increased sensitivity) to the MEK
inhibitor mirdametinib (|rs| = 0.24) and a higher IC50

value (i.e., increased resistance) to the histone deacety-
lase inhibitor panobinostat (|rs| = 0.43; Fig. 4J and Add-
itional File 4). This contrasting sensitivity for MEK and
histone deacetylase inhibition is in line with the data
from a study that used BRAF-mutated melanoma cell
lines. The authors showed that cell lines with acquired
resistance to MEK inhibitors subsequently became sensi-
tive to treatment with the histone deacetylase inhibitor
vorinostat [28]. They concluded that the MEK inhibitor
resistance mechanism results from the activation (or re-
activation) of MAPK cascades [29]. These findings are in
line with our observation that both GDSC mTC 108 and
CCLE mTC 97 were enriched for genes involved in the
negative regulation of the MAPK cascade (Additional
File 1).
As a final example, GDSC mTC 13 was enriched for

genes involved in glutathione metabolism (e.g., GSTO1,
GSTP1, and ESD were among the top-ranked genes in
GDSC mTC 13). This mTC showed specifically high
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activity scores in primary effusion lymphoma cell lines
BC-1, JSC-1, and CRO-AP2 (Supplementary Fig. 9A).
An increase in the activity of this mTC in those cell lines
corresponded to a decrease in the expression of genes
involved in glutathione metabolism. Indeed, in a previ-
ous study, glutathione S-transferases were found to be
specifically downregulated in patient-derived primary ef-
fusion lymphoma cells [30]. The activity of GDSC mTC
13 showed a negative correlation with the IC50 values of
117 drugs, among which metabolically targeted drugs
methotrexate (rs = − 0.37) and phenformin (rs = − 0.29;
Supplementary Fig. 9B and Additional File 4). This
means that cell lines with a high activity of GDSC mTC
13 showed a low IC50 for these 117 drugs, i.e., were sen-
sitive to them.
These examples demonstrate how mTCs can capture

cross-dataset robust metabolic transcriptional footprints
relevant for drug response.

The activity of mTCs is associated with the immune
composition of the tumor microenvironment
We determined the association between the activity of
mTCs and the immune composition of the TME (Add-
itional File 5; see the “Methods” section for details). The
immune composition for all samples in the GEO and
TCGA datasets was determined by inferring fractions of
22 immune cell types using the CIBERSORT algorithm
[31]. We observed that the mTCs that were correlated
with immune cell fractions could be divided into two
groups. The first group included mTCs that were only
identified in the patient-derived datasets. The second
group contained mTCs that were identified in both the
patient-derived and the cell line datasets.
For example, the activity score of GEO mTC 123 was

associated with estimated fractions of CD8+ T cells (|rs| =
0.40), γδ T cells (|rs| = 0.36), activated CD4 memory T cells
(|rs| = 0.34), and regulatory T cells (|rs| = 0.32, Fig. 5A). Be-
longing to the group of mTCs only identified in the
patient-derived datasets, GEO mTC 123 was correlated
highly with only TCGA mTC 34 (|rs| = 0.28). In line with
this, the activity score of TCGA mTC 34 was also associ-
ated with CD8+ T cell fractions (|rs| = 0.58, Fig. 5B). Both
GEO mTC 123 and TCGA mTC 34 showed enrichment
for genes involved in immunological processes such as

leukocyte activation and cytokine metabolism and meta-
bolic processes such as phosphatidylinositol and phospho-
lipid metabolism (Additional File 1). Both GEO mTC 123
and TCGA mTC 34 have no high correlation with the
mTCs in the cell line datasets, suggesting that these mTCs
capture transcriptional activity that is not reflected in cell
line cultures. Another possibility is that these mTCs cap-
ture transcriptional activity from non-cancerous (immune)
cells in the TME.
GEO mTC 14 is illustrative of the second group of

mTCs correlated with immune cell fractions and identi-
fied in both the patient-derived and the cell line datasets.
The activity scores of GEO mTC 14 were correlated
with the fractions of M1 macrophages (|rs| = 0.65) and
M2 macrophages (|rs| = 0.59; Fig. 5C). GEO mTC 14
was correlated with TCGA mTC 70 (|rs| = 0.44), CCLE
mTC 124 (|rs| = 0.47), and GDSC mTC 33 (|rs| = 0.33).
All four mTCs were enriched for genes involved in the
metabolism of extracellular macromolecules (Additional
File 1). Genes coding for several types of collagens were
among the top-ranked in these mTCs. This is in line
with previous reports indicating that macrophages can
function as collagen-producing cells in the TME [32].
GEO mTC 14 and TCGA mTC 70 showed a high activ-
ity score in subsets of breast cancers, lung cancers, and
sarcomas (Supplementary Fig. 10A, B). A negative activ-
ity score of GEO mTC 14 and TCGA mTC 70 was ob-
served in a subset of hematological cancers and
hematological cancer cell lines in both GDSC and CCLE
mTCs. These mTCs were present in both patient data-
sets and cell line datasets, indicating that the captured
metabolic processes reflect tumor cell characteristics ac-
tive under cell culture conditions and that these pro-
cesses are associated with the fraction of macrophages
present in the immune TME of patient-derived samples.
Genes involved in the metabolism of immune cells are

also among the top-ranked genes in mTCs that are cor-
related with immune cell fractions. For example,
ACOD1, aconitate decarboxylase 1, had the fourth high-
est weight in GEO mTC 56, which was enriched for
genes involved in the inflammatory response. Other
high-ranking genes in GEO mTC 56 were for example
TNF (#1), CCL4 (#2), and several other genes known to
be involved in immune signaling. Next to this

(See figure on previous page.)
Fig. 4 Associations between mTCs and drug sensitivity for the selected examples. A Spearman correlations between drug IC50 values and the
activity of GDSC mTC 3. B Scatter plot showing the association between the (log-transformed) IC50 value of nutlin-3a and the activity of GDSC
mTC 3 in samples. The transparency of the dots is the same for all data points. Darker dot colors therefore mean that multiple data points are
overlapping. C Box plot of the activity of GDSC mTC 3 across cell lines, colored for their TP53 mutation status. D Pair-wise correlations between
GDSC mTC 3 and mTCs from the GEO, TCGA, and CCLE datasets. Every dot corresponds to an mTC with a correlation to GDSC mTC 3 of ≥ 0.5.
Dot sizes correspond to the P-value of the Spearman correlation coefficient; the y-axis gives the percentage of the overlapping top genes
between the two mTCs involved in the correlation. E Spearman correlations between the drug IC50 values and the activity of CCLE mTC 4. F Box
plot of the activity of CCLE mTC 4 across cell lines, colored for their TP53 mutation status. G–J Spearman correlations between the drug IC50
values and the activity of GDSC mTC 18, CCLE mTC 28, GDSC mTC 108, and CCLE mTC 97, respectively
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immunological process, GEO mTC 56 was enriched for
the metabolic process of reactive oxygen species metab-
olism regulation (Additional File 1). GEO mTC 56 was
correlated with CCLE mTC 134 (|rs| = 0.46) and GDSC
mTC 29 (|rs| = 0.40). Moreover, the activity of GEO
mTC 56 was highly correlated with the determined eo-
sinophil fraction in a sample (|rs| = 0.43; Supplementary
Fig. 11). The production of reactive oxygen species is a
known effector function of eosinophils [33].
These examples show that by correlating inferred im-

mune cell fractions of samples with the activity scores of
mTCs in samples, the relationship between the meta-
bolic transcriptome and the various components of the
immune TME could be assessed.

Discussion
We used the wealth of publicly available pan-cancer
transcriptomic data to study human metabolism on a
large scale. Previous work used either single-cell sequen-
cing or bulk cell transcriptomic profiles to study the me-
tabolism of specific cancer types [34, 35], or pan-cancer,
but based on a single platform [36, 37]. Our present
study differs from this previous work in two essential as-
pects. Firstly, we used c-ICA to segregate the average ex-
pression patterns of complex biopsies into statistically
independent components [38]. Previous studies investi-
gated the average gene expression profiles of complex
biopsies and can therefore only distinguish the gene ex-
pression signature and regulation of more pronounced

Fig. 5 Associations between mTCs and the composition of the immune tumor microenvironment for selected examples. A, B Spearman
correlations between the CIBERSORT-estimated immune cell fractions and the activity of GEO mTC 123 and TCGA mTC 34. C, D Spearman
correlations between the CIBERSORT-estimated immune cell fractions and the activity of GEO mTC 14 and TCGA mTC 70
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metabolic processes. With c-ICA, it is possible to iden-
tify statistically independent regulatory factors and their
transcriptional footprints and distinguish pronounced
from more subtle metabolic processes. In this way, this
analysis demonstrates the complex nature of metabolically
relevant transcriptional footprints and their heterogenous
activity in samples and cell lines. It enabled us to deter-
mine the association of both pronounced and subtle meta-
bolic processes with, e.g., patient outcome and the
composition of the TME in a complex biopsy. Secondly,
the present study is the most extensive transcriptional
analysis of metabolism and the first that integrated
patient-derived data from GEO and TCGA with cell line
data from CCLE and GDSC. The samples in these four
datasets were obtained from a multitude of independently
constructed, publicly available cohorts, and the expression
profiles were generated using different technologies
(microarray or RNA-sequencing). This integrated dataset
enabled us to demonstrate that most of the identified
mTCs were robust and independent from dataset-specific
and platform-specific characteristics. The observed over-
lap, or lack of overlap, between patient-derived and cell
line-derived mTCs can help researchers understand how
metabolic genes and pathways identified in cell lines can
be translated to a patient tissue context and vice versa.
Furthermore, we hypothesize that metabolic processes

identified only in patient-derived samples and not in cell
line samples capture metabolic processes that are in part
driven by growth conditions specific to the TME, which
are not reflected in cell cultures. Potentially, these meta-
bolic processes could originate from cells in the TME.
These microenvironment-specific metabolic processes
will not be captured by mTCs in cell line datasets. This
is because bulk expression profiles of cancer cell line
samples do not harbor transcriptional footprints associ-
ated with non-cancerous cells.
The metabolic landscape enabled us to classify samples

based on the transcriptional activity of metabolic processes,
resulting in metabolic subtypes. However, this metabolic
classification was often not in full alignment with current
classification systems based on aspects such as receptor sta-
tus and PAM50 molecular subtyping. We demonstrated
that metabolic subtypes were associated with disease out-
comes for breast cancer, emphasizing the relevance of
metabolic pathway-based classification in cancer. The het-
erogeneity (metabolic and otherwise) within and between
cancer types is well recognized, and alternative subtyping
based on metabolite profiling and the metabolic transcrip-
tome have been proposed before [37, 39]. More specifically,
clinically significant metabolism-based classifications have
been proposed in breast cancer [40, 41]. The most active
mTCs in a metabolic subtype relevant to disease outcome
could thus be used to generate new hypotheses for treat-
ment targets. Additionally, the association between the

activity of mTCs and drug sensitivity could help to design
these future therapeutic strategies.
Metabolic heterogeneity and plasticity are not limited

to cancer cells but are also applicable to the immune
cells present in the tumor microenvironment. Immune
cells undergo metabolic changes when activated, and
their metabolic status can overlap with the metabolic
state of cancer cells [42]. For example, the Warburg ef-
fect is classically seen as an example of a metabolic
transformation in cancer cells. However, it is also ob-
served in activated T cells [43, 44]. In the context of me-
tabolism, this complex interplay between cancer cells
and immune cells present in the microenvironment gives
a new dimension to the use of drugs that target meta-
bolic processes [45, 46]. For instance, modulating metab-
olism in T cells from glycolytic to an OXPHOS-
weighted profile has been shown to improve immuno-
therapy [47, 48]. Our transcriptional metabolic landscape
can contribute to knowledge of immunometabolism and,
combined with the association of mTCs with drug sensi-
tivity, can also contribute to the formulation of new hy-
potheses on how to metabolically engage the tumor and
its immune microenvironment, thus improving the re-
sponse to immunotherapy.
Further research to gain an even more comprehensive

understanding of the metabolism in patient-derived can-
cer samples should ideally integrate genomics, tran-
scriptomics, proteomics, and metabolomics to capture
the complexity of metabolic processes within cancer
cells [49]. Recent initiatives are the Recon3D, Edinburgh
Human Metabolic Network (EHMN), and Human1 pro-
jects [50–52]. However, challenges for these initiatives
lie in the limited set of samples for which these high-
dimensional multi-omics features are available and the
use of predominantly cell line samples. Paired datasets
on a large scale are needed to unleash the full potential
of such an integrated approach.
To facilitate the use of our transcriptional metabolic

landscape, we have provided access to all data via a web
portal (www.themetaboliclandscapeofcancer.com). In
this portal, users can explore genes, metabolic processes,
and tissue types of interest. We invite researchers and
clinicians to use this portal as a guide to the metabolic
transcriptome in cancer or as a starting point for further
research into cancer metabolism. In this manuscript, we
have presented observations that align with experimental
findings which were already published, demonstrating
the validity of our approach. We look eagerly forward to
upcoming experimental validations of the novel associa-
tions that could be put forward by investigating mTCs
as well. These validations will further affirm the use of
mTCs in understanding the complex associations of the
metabolic transcriptome with, e.g., drug sensitivities and
ultimately patient outcome.
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Conclusions
In the present study, we used consensus independent
component analysis (c-ICA) in combination with gene
set enrichment analysis (GSEA) to identify a broad set of
robust metabolic transcriptional components (mTCs).
The transcriptional metabolic landscape of patient-
derived cancer tissue, cancer cell lines, and non-cancer
samples was captured in these mTCs. We also showed
how mTCs could be used to generate hypotheses by ex-
ploring associations between metabolic processes and
drug sensitivities, patient outcomes, and the composition
of the immune tumor microenvironment.
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