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Abstract

Background: Increased flux through both glycolytic and oxidative metabolic pathways is a hallmark of breast
cancer cells and is critical for their growth and survival. As such, targeting this metabolic reprograming has received
much attention as a potential treatment approach. However, the heterogeneity of breast cancer cell metabolism,
even within classifications, suggests a necessity for an individualised approach to treatment in breast cancer
patients.

Methods: The metabolic phenotypes of a diverse panel of human breast cancer cell lines representing the major
breast cancer classifications were assessed using real-time metabolic flux analysis. Flux linked to ATP production,
pathway reserve capacities and specific macromolecule oxidation rates were quantified. Suspected metabolic
vulnerabilities were targeted with specific pathway inhibitors, and relative cell viability was assessed using the
crystal violet assay. Measures of AMPK and mTORC1 activity were analysed through immunoblotting.

Results: Breast cancer cells displayed heterogeneous energy requirements and utilisation of non-oxidative and
oxidative energy-producing pathways. Quantification of basal glycolytic and oxidative reserve capacities identified
cell lines that were highly dependent on individual pathways, while assessment of substrate oxidation relative to
total oxidative capacity revealed cell lines that were highly dependent on individual macromolecules. Based on
these findings, mild mitochondrial inhibition in ESH-172 cells, including with the anti-diabetic drug metformin, and
mild glycolytic inhibition in Hs578T cells reduced relative viability, which did not occur in non-transformed MCF10a
cells. The effects on viability were associated with AMPK activation and inhibition of mTORC1 signalling. Hs578T
were also found to be highly dependent on glutamine oxidation and inhibition of this process also impacted
viability.

Conclusions: Together, these data highlight that systematic flux analysis in breast cancer cells can identify
targetable metabolic vulnerabilities, despite heterogeneity in metabolic profiles between individual cancer cell lines.
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Background
Cancer cells reprogram their metabolism to drive high
rates of proliferation and ensure their survival under
conditions of fluctuating nutrient availability [1]. Early
characterisation of these alterations in metabolism sug-
gested that cancer cells exclusively increased glycolytic
flux to maintain high rates of ATP production [2]. It is

now recognised that although glycolysis is elevated in
most cancer cells, flux through oxidative metabolic path-
ways is often also increased [3]. Enhanced flux through
both these major metabolic pathways not only maintains
cellular energy balance, which is critical for maximal
activity of growth signalling pathways such as mamma-
lian target of rapamycin complex 1 (mTORC1), but also
provides metabolite intermediates for the synthesis of
nucleotides and lipids, as well as balancing the cellular
redox state [1]. However, the metabolic phenotype of
different cancer types is highly heterogeneous [4].
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As cancer cells are highly dependent on metabolic
reprogramming for their proliferation and survival, tar-
geting tumours with therapies that inhibit specific meta-
bolic pathways has been touted as a new treatment
approach [5]. Indeed, a number of early phase clinical
trials have utilised metabolic inhibitors as both standa-
lone and combination therapies with existing treatments
[5]. Given the heterogeneity in cancer cell metabolism, it
is necessary to discover persistent metabolic vulnerabil-
ities that can be targeted in specific cancer types [5]. A
common approach has coupled stable isotope tracers to
metabolomics to quantify substrate flux through various
metabolic pathways [6]. Importantly, this approach can
be used in vivo in both patients and pre-clinical models
and it has successfully identified metabolic vulnerabil-
ities in renal clear cell [7], lung [8], pancreatic [9] and
glioblastoma tumours [10], to name a few. However,
specific stable isotopes are required to interrogate par-
ticular metabolic pathways, which require some prior
knowledge of the type of metabolic vulnerability being
investigated [11]. It is also recognised that metabolism
within an individual tumour can be spatially heteroge-
neous due to factors such as nutrient and oxygen pene-
trance [12, 13], and therefore, the site of sampling can
have a profound impact on conclusions generated using
this approach. Another method used to identify meta-
bolic vulnerabilities is real-time flux analysis in isolated
and cultured cancer cells [6]. Although this approach
cannot account for in vivo conditions that influence me-
tabolism, ex vivo analyses are likely to identify persistent
metabolic reprogramming events that are independent
of the metabolic environment yet influence cancer cell
metabolism in vivo. Real-time flux analysis has been
used to characterise metabolic vulnerabilities in a range
of cancer cells, which have been successfully targeted
in vivo [14, 15]. However, the methods used to identify
metabolic vulnerabilities in cancer cells using real-time
flux analysis have been ad hoc, and there are no clear
stepwise protocols to identify metabolic vulnerabilities in
cancer cells using this approach.
Breast cancer is highly diverse, with numerous different

classifications based on immuno-profiles and the expres-
sion of specific growth factor receptors [16]. Different
breast cancer classifications have a greater reliance on
fatty acid [17] and glutamine [18] metabolism, suggesting
that there is heterogeneity in metabolism between breast
cancer subtypes. Although extensive genomic character-
isation of different breast cancer types has been performed
[19, 20], systematic assessment of the persistent metabolic
alterations in breast cancer cells across its diverse classifi-
cations is limited. Therefore, the aim of the present study
was to characterise the metabolic phenotypes across a
panel of breast cancer cell lines before using a standar-
dised, yet comprehensive, approach in an effort to identify

potential metabolic vulnerabilities in major metabolic
pathways coupled to ATP production using real-time
metabolic flux analysis. These potential vulnerabilities
were then targeted with specific metabolic inhibitors.

Methods
Cell culture
All human breast cancer cell lines and the MCF10a control
cell line were obtained from American Type Culture Col-
lection (ATCC), with the exception of the ESH172 line,
which was a generous gift from Prof. Robin Anderson
(Translational Breast Cancer Program, Olivia Newton-John
Cancer Research Institute). All cell lines were cultured in
growth media consisting of DMEM (4.5 g/l glucose; Invitro-
gen) supplemented with 10% foetal bovine serum (In Vitro
Technologies) at 37 °C in 5% CO2. Cells were maintained at
sub-confluence.

Metabolic flux analysis
A systematic flux approach to identify potential meta-
bolic vulnerabilities in breast cancer cells was devised,
which included assessment of basal bioenergetics, mito-
chondrial function and substrate oxidation dependency
in a step-wise manner (Fig. 1).
Mitochondrial function was measured using the Seahorse

XF24 Flux Analyser (Seahorse Bioscience), as we have pre-
viously described [21]. Briefly, the day prior to analysis, cells
were seeded into a 24-well XF24 cell culture microplate
(Seahorse Bioscience) such that they were ~ 80% confluent
on the day of assay. Cells were washed and incubated in
600 μl assay running media (unbuffered DMEM, Invitrogen;
supplemented with 25mM glucose, 1mM pyruvate and 1
mM glutamate, pH 7.4) in a non-CO2 incubator at 37 °C
for 1 h before commencing the assay. Mitochondrial func-
tion was analysed by performing three baseline oxygen con-
sumption rate (OCR) measurements, before a subsequent
three measurements following injections of oligomycin
(ATP synthase inhibitor; 1 μM final concentration), car-
bonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP;
mitochondrial oxidative phosphorylation uncoupler; 1 μM
final concentration), rotenone (mitochondrial complex I in-
hibitor; 1 μM final concentration) and Antimycin A (mito-
chondrial complex III inhibitor; 1 μM final concentration).
Each measurement cycle consisted of the following: 3min
mix, 3min wait and 3min measure. Extracellular acidifica-
tion rate (ECAR) was measured concurrently with OCR.
Data was normalised to total protein, which was de-
termined after the assay using the bicinchoninic acid
(BCA) method. Raw OCR and ECAR data plots are
shown in Additional file 1: Figure S1.
Basal OCR and basal ECAR (Fig. 2a) are the mean

values of the three baseline measures. Rates of glycolytic
and oxidative ATP production (Fig. 2b) were calculated
using mean values from the three measurements of the
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relevant measurement cycle generated in this mitochon-
drial function assay as previously described [22]. Total
glycolytic capacity was calculated as the mean value of
three ECAR measurements following injection of oligomy-
cin. Glycolytic reserve capacity (Fig. 2c) was subsequently

calculated as percent difference between total glycolytic
capacity and basal ECAR. Total oxidative capacity was cal-
culated by subtracting the mean value of three measure-
ments following Antimycin A injection, from the mean of
the three measures following FCCP injection. Basal OCR

Fig. 1 Systematic flux analysis protocol to identify targetable metabolic vulnerabilities in human breast cancer cell lines
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attributed specifically to ATP production (i.e. excluding
the contribution of H+ leak) was calculated by subtracting
the mean value of three measurements following oligomy-
cin injection from baseline OCR. Finally, oxidative reserve
capacity (Fig. 2d) was calculated as the percent difference
between total oxidative capacity and basal OCR.

Testing metabolic vulnerabilities by inhibiting specific
pathways
The effect of the metabolic inhibitors 2-deoxyglucose
(2DOG; Fig. 3a), oligomycin (Fig. 3d) and metformin
(Fig. 3g) on OCR or ECAR was assessed using the
Seahorse XF24 Flux Analyser. The day before analysis,
cells were seeded into a 24-well XF24 cell culture micro-
plate (Seahorse Bioscience) such that they were ~ 80%
confluent the following day. Cells were washed and incu-
bated in 600 μl assay running media, as described above,
prior to analysis. Three baseline OCR and ECAR mea-
surements were obtained. The inhibitor of interest was
then injected followed by eight more OCR and ECAR
measurements. Each measurement cycle consisted of the
following: 3 min mix, 2 min wait and 3min measure.

Data were normalised by dividing the final measurement
following inhibitor injection, to ensure that the effects of
subtle metabolic inhibition had plateaued, by the third
baseline measure immediately prior to inhibitor injec-
tion. Raw data plots are shown in Additional file 1:
Figure S2.

Substrate utilisation analysis
The ability of the mitochondria to oxidise the macromole-
cules glucose, glutamine and palmitate was analysed using
the Seahorse XF24 Flux Analyser (Fig. 5a–d) and the Mito
Fuel Flex Test by Agilent, with some changes. Parameters
measured by this assay are as follows: dependency—de-
fined as the absolute reliance on the oxidation of a par-
ticular substrate for ATP production; capacity—defined as
the maximal oxidation rate of a particular substrate; flexi-
bility—defined as the ability to compensate mitochondrial
oxidation by switching from one substrate to another; and
residual oxidative capacity—defined as the maximal mito-
chondrial oxidation that can be achieved when the oxida-
tion of one particular substrate has been inhibited.

Fig. 2 Human breast cancer cell lines are heterogeneous in their metabolic profiles. a Oxygen consumption rate (OCR) vs. extracellular
acidification rate (ECAR). b Glycolytic and mitochondrial ATP production rate. c Glycolytic reserve capacity. d Oxidative reserve capacity. All data
are mean ± SEM, n = 5–27 biological replicates/group. *p < 0.05 vs. MCF10a control cell line. Luminal A (LA), luminal B (LB), triple-negative (TN)
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To carry out the assay the day prior to analysis, cells
were seeded into a 24-well XF24 cell culture microplate
such that they were ~ 80% confluent the following day.
Cells were washed and incubated in 600 μl assay running
media (unbuffered DMEM, Invitrogen; supplemented
with 5mM glucose, 1 mM pyruvate, 1 mM glutamate
and 0.5 mM carnitine, pH 7.4) at 37 °C in a non-CO2

incubator for 1 h prior to analysis. To measure depend-
ency, three baseline OCR measurements were performed
followed by five measurements after the injection of an
inhibitor that targeted the pathway of interest (Table 1).
A further five measurements were performed following the
injection of inhibitors targeting the two alternative substrate
oxidation pathways (Table 1). Dependency was calculated

Fig. 3 Targeting metabolic vulnerabilities reduced breast cancer cell viability. a Extracellular acidification rate (ECAR) in Hs578T cells treated
acutely with 0.5 and 4mM 2-deoxyglucose (2DOG). b Cell viability in Hs578T cells. c MCF10a cells treated with 0.5 and 4 mM 2DOG for 2 days. d
Oxygen consumption rate (OCR) in ESH-172 cells treated acutely with 2 and 4 nM oligomycin. e Cell viability in ESH-172 cells treated with 2 and
4 nM oligomycin for 2 and 3 days. f Cell viability in MCF10a cells treated with 2 and 4 nM oligomycin for 3 days. g OCR in ESH-172 cells treated
acutely with 1 and 4mM metformin. h Cell viability in ESH-172 cells treated with 1 and 4mM metformin for 2 and 3 days. i Cell viability in
MCF10a cells treated with 1 and 4 mM metformin for 3 days. All data are mean ± SEM, n = 3–7 biological replicates/group. *p < 0.05 vs. vehicle
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by subtracting the mean values of the OCR measurements
taken following the first injection from the mean values of
the basal OCR measurements. To measure capacity, three
baseline OCR measurements were performed followed by
five measurements after injection of the inhibitors targeting
the two alternative substrate oxidation pathways, and a fur-
ther five measurements after the injection of an inhibitor
that targeted the pathway of interest. Capacity was calcu-
lated by subtracting the mean values of the OCR measure-
ments following the second injection from those following
the first injection. Flexibility was calculated by subtracting
the dependency measurement from the capacity measure-
ment for any given substrate. For the purpose of identifying
potential metabolic vulnerabilities, we chose to also calculate
the residual oxidative capacity. This was calculated by sub-
tracting dependency from total oxidative capacity where
total oxidative capacity is the mean values of the basal OCR
measures subtracted by the mean values of the OCR mea-
sures following inhibition of all the oxidation pathways. This
allowed the identification of substrates that cells were highly
dependent upon, with little ability to use alternative path-
ways to compensate. Each measurement cycle consisted of
the following: 3min mix, 3min wait and 3min measure.
Final concentrations of the inhibitors are as follows: 2 μM
UK5099, 40 μM etomoxir and 3 μM Bis-2-(5-phenylaceta-
mido-1,3,4-thiadiazol-2-yl)ethyl sulphide (BPTES). Raw data
plots are shown in Additional file 1: Figure S3.

Cell viability assay
Crystal violet stain was used to quantify relative cell via-
bility. Cells were seeded at sub-confluence into 96-well
cell culture plates and treated with metabolic inhibitors
the same day, once cells had adhered. Cells were allowed
to proliferate for 2 to 3 days. Cells were then washed in
PBS and then stained for 10 min at room temperature
with 0.5% crystal violet (Sigma) in 30% ethanol. Wells
containing no cells were included as a background con-
trol. Following staining, cells were washed three times
with PBS before being lysed in 1% SDS. The crystal
violet dye was dispersed by pipetting up and down, and
absorbance was measured at a wavelength of 595 nm on
an xMark microplate absorbance spectrophotometer
(Bio-Rad Laboratories).

Western blot analysis
For signalling analyses, cells were seeded into 12-well
cell culture plates and treated with metabolic inhibitors
the following day. After 2 days of treatment, protein was
extracted using protein lysis buffer containing 50mM
Tris pH 7.5, 1 mM EDTA, 1 mM EGTA, 10% glycerol,
1% Triton X-100, 50 mM NaF, 5 mM Na4P2O7, 1 mM
Na3VO4, 1mM DTT and a protease inhibitor cocktail.
Protein concentration was determined using a BCA Protein
Assay kit (Pierce), and equal amounts of total protein were
separated by SDS-PAGE. Proteins were transferred onto
PVDF membrane and blocked for 1 h at room temperature
with 1% BSA in Tris-buffered saline containing 0.05%
Tween 20 (TBST, pH 7.4). Membranes were then incu-
bated in the following primary antibodies overnight at 4 °C:
phospho-AMPKα (Thr172) (Cell Signalling Technology),
AMPKα (Cell Signalling Technology), phospho-mTOR
(Ser2448) (Cell Signalling Technology), mTOR (Cell Signal-
ling Technology), phospho-p70 S6 Kinase (Thr389) (Cell
Signalling Technology), p70 S6 kinase (Cell Signalling
Technology) and α-tubulin (Sigma-Aldrich). Membranes
were then washed in TBST before being incubated for 1 h
at room temperature with relevant HRP-conjugated sec-
ondary antibody used at 1:10,000 in TBST. The protein of
interest was detected and visualised using Clarity Western
ECL Substrate (Bio-Rad Laboratories) on a Chemidoc XRS
System and Image Lab software (Bio-Rad Laboratories).

Statistical analysis
Statistical analyses were performed using Prism Graph-
Pad. Two-tailed t test or one-way ANOVA were used to
compare groups as appropriate. Results are presented as
mean ± SEM, and p < 0.05 was considered statistically
significant.

Results
Identification of potential metabolic vulnerabilities in
human breast cancer cell lines using glycolytic and
oxidative flux measures
A panel of human breast cancer cell lines was assessed to
first determine their basal metabolic profiles. Cell lines
representing various immuno-profiles and classifications of
the major breast cancer subtypes were analysed and com-
pared to the control non-transformed breast epithelial
MCF10a cell line. The classification of the ESH-172 cell line
has not been extensively characterised [23]. Basal glycolytic
(ECAR) and oxidative (OCR) flux was measured simultan-
eously in each cell line using the Seahorse XF24 Flux Ana-
lyser (Fig. 2a). This analysis revealed a high level of
heterogeneity between cell lines in both measures. Com-
pared with MCF10a cells, all breast cancer cell lines had
elevated basal energetics, represented by increased glycoly-
sis and oxidative cellular respiration. Using data generated
in subsequent mitochondrial function tests, the rate of ATP

Table 1 Injection strategy of inhibitors for assessment of
substrate oxidation dependency and capacity

Pathway Measure 1st injection 2nd injection

Glucose Dependency UK5099 BPTES/etomoxir

Capacity BPTES/etomoxir UK5099

Glutamine Dependency BPTES Etomoxir/UK5099

Capacity Etomoxir/UK5099 BPTES

Palmitate Dependency Etomoxir BPTES/UK5099

Capacity BPTES/UK5099 Etomoxir
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production from glycolytic and oxidative sources was also
calculated. All breast cancer cell lines produced greater
amounts of ATP than MCF10a cells through oxidative
pathways, with the exception of the Hs578T line (Fig. 2b).
In contrast, only the BT474, Hs578T, BT549 and ESH-172
cell lines produced more ATP than MCF10a cells through
glycolysis (Fig. 2b). Additional analyses were performed to
identify cell lines with limited reserve capacity in either
glycolytic (Fig. 2c) or oxidative flux (Fig. 2d) in the basal
state. We reasoned that any cell line using a high propor-
tion of its total flux capacity for a particular pathway could
represent a potential metabolic vulnerability. Although
most cell lines possessed between 40 and 60% glycolytic
reserve capacity, the Hs578T cell line was using in excess of
90% of its total glycolytic capacity, leaving only ~ 10% in
reserve capacity (Fig. 2c). Similarly, assessment of oxidative
reserve capacity revealed that the ESH-172 cell line pos-
sessed only ~ 10% reserve capacity, the lowest of all cell
lines analysed (Fig. 2d).

Targeting metabolic vulnerabilities to reduce cell viability
As the Hs578T and ESH-172 cell lines used glycolysis and
oxidative metabolism, respectively, at close to maximal
flux capacity in the basal state, we next examined whether
these could be a druggable vulnerability in these cells. By
identifying metabolic pathways with little reserve flux cap-
acity, we reasoned that even minor inhibition of these
pathways could have discernible effects on cell viability.
To assess whether inhibition of the glycolytic pathway in
Hs578T cells is a metabolic vulnerability, cells were
treated with 2DOG, which provides feedback inhibition to
the hexokinase/glucokinase reaction and slows glycolytic
flux [24]. Acute treatment with 0.5mM and 4mM 2DOG
resulted in a dose-dependent decrease in ECAR; however,
this effect was not statistically significant (Fig. 3a). Follow-
ing 2 days of 0.5 mM and 4mM 2DOG treatment, there
was a dose-dependent decrease in Hs578T cell viability by
41% and 66%, respectively, compared to vehicle control
(Fig. 3b). To ensure this was a cell line-specific effect,
MCF10a cells were also treated with 2DOG for 2 days and
there was no significant effect on viability (Fig. 3c), sug-
gesting that mild glycolytic inhibition is not a metabolic
vulnerability in these cells.
We next sought to determine whether mild inhibition

of oxidative ATP generation impacts the viability of
ESH-172 cells. When these cells were acutely treated
with 2 or 4 nM of the ATP synthase inhibitor oligomy-
cin, a small but non-statistically significant reduction in
OCR was observed (Fig. 3d). Viability was significantly
reduced by 44% at day 2 of treatment with 4 nM oligo-
mycin, and 44% and 52% at day 3 of treatment with 2
nM and 4 nM oligomycin, respectively (Fig. 3e). Interest-
ingly, treatment of control MCF10a cells with 4 nM oli-
gomycin for 3 days increased cell viability (Fig. 3f). These

data show that mild inhibition of oxidative ATP gener-
ation with oligomycin reduced cell viability specifically
in ESH-172 cells. As irreversible mitochondrial inhibi-
tors such as oligomycin cannot be used clinically, we
next assessed whether treatment of ESH-172 cells with
metformin had similar effects on viability. Metformin is
the most widely prescribed anti-diabetic agent and an
inhibitor of complex I in the electron transport chain
that reduces oxidative ATP generation [25]. Further-
more, a number of studies have found that metformin
administration reduces breast cancer risk [26, 27]. ESH-
172 cells were treated acutely with 1 mM and 4mM
metformin, and OCR was significantly reduced with 4
mM treatment (Fig. 3g). ESH-172 viability was decreased
by 24% at day 2 of treatment with 4mM metformin and
by 15% and 37% at day 3 of treatment with 1mM and 4
mM metformin, respectively (Fig. 3h). Metformin treat-
ment had no effect on the viability of MCF10a cells after
3 days of treatment (Fig. 3i). These data suggest that
metformin reduced cell viability specifically in ESH-172
breast cancer cells.

Effect of metabolic inhibitors on AMPK and mTORC1
signalling
The metabolic vulnerabilities in the Hs578T and ESH-
172 cells were identified due to their high contribution
to ATP production in those cell lines. Therefore, it was
predicted that targeting these metabolic vulnerabilities
would induce an energetic stress that impacts on cancer
cell growth signalling. This could lead to AMPK activa-
tion, which is known to inhibit mTORC1 signalling,
including the mTORC1 substrate p70 S6K, through mul-
tiple mechanisms [28]. The effect of targeting these
metabolic vulnerabilities on this signalling axis was ex-
plored. Hs578T cells treated with 4 mM 2DOG for 2
days increased pT172 AMPKα compared with vehicle
and decreased pT389 p70 S6K, indicating a deficient
ATP supply that impacts on growth signalling (Fig. 4a).
There was no effect on phosphorylation of mTOR at
S2448 with either dose (Fig. 4b). Treatment of ESH-172
cells with oligomycin for 2 days significantly increased
pT172 AMPKα at both 2 and 4 nM doses and decreased
pT389 p70 S6K at both doses; however, this change was
not significant (p = 0.079 and 0.125, respectively; Fig. 4b).
Again, pS2448 mTOR showed no change compared to
vehicle (Fig. 4b). Metformin treatment of ESH-172 cells
increased AMPKα T172 phosphorylation at 4 mM after
2 days of treatment (Fig. 4c). Both pS2448 mTOR and
pT389 p70 S6K were not affected at either dose of metfor-
min (Fig. 4c). These data show that targeting metabolic
vulnerabilities with metabolic inhibitors induced AMPK
activation and impaired mTORC1 signalling, while met-
formin activated AMPK but did not affect mTORC1
activity.
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Macromolecule substrate oxidation dependency as
potential metabolic vulnerabilities
The flux approach taken to date identified potential
metabolic vulnerabilities based on the overreliance on
glycolytic or oxidative metabolism to produce ATP. As
these measures alone did not detect obvious potential
vulnerabilities in all cell lines, we next examined whether
potential vulnerabilities could be identified through the
overreliance on the oxidation of any one of the major
macromolecules. To test this concept, cell lines were

selected based on their oxidative and glycolytic profiles.
The BT549 cell line was selected as a mid-range oxida-
tive and glycolytic line, ESH-172 cells as a highly glyco-
lytic line, MDA-MB-175-VII cells as a highly oxidative
line and Hs578T cells as a low-range oxidative line. The
dependency of cell lines on glucose, glutamine and
palmitate oxidation to drive mitochondrial respiration
was examined, and a potential vulnerability was identi-
fied where a cell line had limited residual capacity to
oxidise the two alternative macromolecules. The BT549

Fig. 4 Cellular energy homeostasis is disrupted with metabolic inhibitors. AMPK-mTORC1 signalling in a Hs578T cells treated with 0.5 and 4mM
2DOG for 2 days, b ESH-172 cells treated with 2 and 4 nM oligomycin for 2 days and c ESH-72 cells treated with 1 and 4mM metformin for 2
days. All data are mean ± SEM, n = 3 biological replicates/group. *p < 0.05 vs. vehicle
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(Fig. 5a), ESH-172 (Fig. 5b) and MDA-MB-175-VII cell
lines (Fig. 5c) were not dependent on the oxidation of
any one macromolecule. In contrast, the Hs578T cell
line was found to be highly dependent on glutamine oxi-
dation, with limited residual capacity to oxidise palmi-
tate and/or glucose (Fig. 5c), which could be a targetable
vulnerability.

Inhibition of glutamine oxidation to reduce cell viability
To assess the dependency of the Hs578T cell line on glu-
tamine metabolism and its potential as a metabolic target,
we treated these cells with BPTES. This compound is an
inhibitor of the glutaminase enzyme, which is responsible
for the conversion of glutamine to glutamate following
glutamine uptake [29]. Treatment of Hs578T cells with
3 μM BPTES for 2 days reduced viability by 25% relative
to vehicle control (Fig. 6a). The same treatment had simi-
lar trends towards reducing the viability of MCF10a cells
(Fig. 6b). Although this was not statistically significant, it
likely reflects the key role for glutamine metabolism in

most proliferating cell types. The inhibition of glutamine
metabolism on growth signalling was also investigated.
Hs578T cells treated with 3 μM BPTES for 2 days had de-
creased pT172 AMPKα expression compared to vehicle,
but there was no change in pS2448 mTOR or pT389 p70
S6K expression compared to vehicle (Fig. 6c). These data
suggest that inhibition of glutamine metabolism impairs
viability in Hs578T cells through alternate mechanisms.

Discussion
Breast tumours are extensively heterogeneous in their
growth, metastatic potential and metabolism, even
within classifications. As our understanding of this het-
erogeneity increases so too does the realisation that indi-
vidualised treatments may be necessary for improved
patient outcomes. Hence, the ability to culture breast
tumour cells ex vivo in order to identify vulnerabilities
that can be exploited could prove to be a powerful tool
in cancer treatment [30]. In the present study, we ana-
lysed the metabolic profiles of a panel of breast cancer

Fig. 5 Hs578T cells are heavily reliant on glutamine oxidation. The dependency of mitochondria on the oxidation of glucose, glutamine or
palmitate and residual oxidative capacity of alternate substrates in a BT549, b ESH-172, c MDA-MB-175-VII and d Hs578T cells. All data are mean ±
SEM, n = 3–5 biological replicates/group
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cell lines that spanned the different breast cancer classi-
fications and molecular subtypes using real-time meta-
bolic flux analysis. Despite high metabolic heterogeneity,
this analysis allowed us to identify targetable metabolic
vulnerabilities in major metabolic pathways, specifically
linked to ATP production, in order to reduce the relative
viability of a number of different breast cancer cell lines.
Although we did not determine whether these effects
were due to inhibition of cell proliferation, induction of
cell death or both, this approach paves the way for more
mechanistic studies examining these interactions.
In the present study, basal glycolytic and oxidative

metabolic flux analysis of the various breast cancer cell
lines revealed that their energetic profile is vastly hetero-
geneous. Compared with MCF10a control cells, the ma-
jority of breast cancer cell lines had increased oxidative
respiration rate, while just four cell lines had elevated
rates of glycolytic ATP production. Increased glycolytic
rate has long been established as an adaptive response of

cancer cells, regardless of oxygen availability [2]. This
phenomenon, known as the ‘Warburg effect’, provides
not only ATP, but also metabolic intermediates from
biosynthetic pathways that stem from the glycolytic
pathway to support rapid proliferation and survival of
the cancer cells [1]. An interesting finding from the
present study was that the glycolytic pathway produces
very little ATP in most breast cancer cell types, suggest-
ing that glucose catabolism through this pathway is
more closely linked to biosynthetic processes. Increased
oxidative respiration also supports proliferation and sur-
vival by serving as the major source of ATP for the cell
[31–33], and our analyses showed that most breast can-
cer cells relied predominantly on oxidative metabolism
for their ATP needs under normoxic conditions. More-
over, breast cancer subtypes generally had no discernible
common metabolic profile based on these measures.
However, it should be noted that three of the four cell
lines with elevated rates of glycolytic ATP production

Fig. 6 Inhibition of glutamine oxidation reduced Hs578T cell viability. a Cell viability in Hs578T cells treated with 3 μM BPTES for 2 days. b Cell
viability in MCF10a cells treated with 3 μM BPTES for 2 days. c AMPK-mTORC1 signalling in Hs578T cells treated with 3 μM BPTES for 2 days. All
data are mean ± SEM, n = 3–4 biological replicates/group. *p < 0.05 vs. vehicle
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were basal B/triple negative cell lines. Glycolytic inhib-
ition has previously been used to reduce viability of
breast cancer cells from this classification [34], both
under normoxic and hypoxic conditions [35]. These
studies support the approach taken in the present study,
and although culture conditions could be optimised to
replicate in vivo conditions, flux approaches to identify
metabolic vulnerabilities appear to have efficacy under
standard culturing conditions.
Given the heterogeneity of the basal energetic profile of

the cell lines studied here, individualised examination of
cellular metabolic measures in vitro may be necessary to
identify potential vulnerabilities that could be exploited to
reduce proliferation and/or survival of these cells. Indeed,
flux profiling of patient-derived cancer cells could allow
personalised treatment. In order for this to be a viable ap-
proach, it will be critical to understand whether persistent
metabolic reprogramming events are retained in patient
cell lines ex vivo. Notwithstanding, the systematic flux
analysis used here was able to identify cell lines that were
heavily reliant on ATP generation through either glycoly-
sis or oxidative respiration, and targeting these respective
pathways in predicted vulnerable cell lines reduced their
viability by inducing an energetic crisis, without effect on
control cells. We found that treatment of these breast can-
cer cell lines with metabolic inhibitors to reduce flux
through either glycolysis or oxidative phosphorylation
resulted in the activation of AMPK and inhibition of
mTORC1 signalling. AMPK is a cellular energy sensor
that monitors ATP/AMP and ATP/ADP ratios and is acti-
vated through phosphorylation to increase ATP produc-
tion and meet the energetic demands of the cell [28, 36].
Downstream inactivation of p70 S6K was also observed in
these cells where p70 S6K plays a role in protein synthesis
and cell growth [37, 38]. Furthermore, the energetic im-
balance observed in these cells following metabolic inhib-
ition as assessed by AMPK activation suggests that they
were not able to upregulate other pathways to compensate
for the reduction in ATP levels. Indeed, when these mea-
sures were analysed, cells treated with various metabolic
inhibitors did not increase flux through the alternative
major ATP-producing pathway. This is of interest as
metabolic adaption to unfavourable environments is a
hallmark of cancer cells and often metabolic inhibition
cannot be used as a monotherapy but rather to sensitise
cells to a further insult [39].
Although the ATP synthase inhibitor oligomycin was

effective at reducing viability of ESH-172 cells, mitochon-
drial inhibitors such as this cannot be used clinically due
to their toxicity. An alternative therapy that is reasonably
well tolerated in humans is the anti-diabetic drug metfor-
min, which can act as an inhibitor of complex I at high
concentrations that reduces oxidative ATP generation
[25]. Metformin reduced ESH-172 cell viability, which is

consistent with evidence that metformin exerts anti-
cancer effects in breast tumours [26, 27, 40–42]. However,
in a clinical setting, the response to metformin varies
widely between individuals and is often used as a combin-
ation therapy [43]. We found that in ESH-172 cells, met-
formin treatment significantly reduced the viability of the
cells relative to vehicle control without effects on the via-
bility of control MCF10a cells. Although the mechanism
of action of metformin is yet to be clearly defined, it is ac-
cepted that it acts as an inhibitor of complex I in the ETC
[25, 44, 45] and can therefore reduce ATP turnover result-
ing in the activation of AMPK [46]. Our findings are con-
sistent with this as AMPK was activated with metformin
treatment; however, there was no concomitant reduction
in p70 S6K activation suggesting an alternative down-
stream mechanism independent of mTORC1 inhibition.
Although this finding is in contrast to the current litera-
ture suggesting that metformin can reduce protein synthe-
sis and proliferation through the inhibition of mTOR and
p70 S6K [47–49], it is consistent with results from an
in vitro study by Hadad et al. [50]. This study found that
despite increased activation of AMPK in response to met-
formin, phosphorylation of p70 S6K in the human breast
cancer cell lines MCF-7 (ER-positive) and MDA-MB-231
(ER-negative) was unchanged [50]. Instead, increased
phosphorylation of acetyl-CoA carboxylase (ACC) by
AMPK was identified as an alternative mechanism follow-
ing metformin treatment potentially leading to reduced
lipid synthesis [50], which may also be relevant in the
present study. Further highlighting the complexity in the
cellular metformin response, Queiroz et al. showed that
metformin increased mitochondrial ROS production and
activated FOXO3a in MCF7 cells, which was associated
with an increase in p27 and cell cycle arrest [49]. Metfor-
min has also been found to challenge the viability of vari-
ous cancer cells through regulation of p53 activity, Wnt/
β-catenin signalling [51] and mitochondrial mediators of
apoptosis [52]. This suggests that the cellular responses to
metformin appear to be cell type and context dependent
and additional research will be required to establish the
mechanism of action in ESH-172 cells.
The approach used in the present study could poten-

tially identify additional cell lines with similar metabolic
vulnerabilities beyond those reported. For example, the
HBL-100 cell line may also be sensitive to oxidative res-
piration inhibitors, as it too has little oxidative reserve
capacity. However, it is reasonable to conclude that
quantification of the reserve capacity of major ATP-
producing pathways may not be effective at identifying
vulnerabilities in all the cell lines. We therefore sought
to broaden the measures available to identify potential
metabolic vulnerabilities by examining the reliance of
particular cell lines on the oxidation of the major macro-
molecules. The Hs578T cell line was identified as being
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highly dependent on glutamine oxidation with it ac-
counting for a large amount of its total oxidative cap-
acity. Importantly, this finding provides some validation
for the approach, as glutamine utilisation has previously
been identified as a metabolic vulnerability in triple-
negative breast cancer cells [18]. In the present study,
inhibition of glutamine oxidation in Hs578T cells, by
treating with BPTES, decreased cell viability relative to
vehicle control-treated cells and was associated with a
decrease in AMPK phosphorylation and no effect on the
activation of p70 S6K. As AMPK was not activated by
BPTES treatment, this suggests that inhibition of glu-
tamine oxidation does not induce an energetic crisis, but
could potentially change other aspects of cellular bio-
energetics [53], thus adversely effecting viability. Indeed,
glutaminase inhibition also tended to negatively impact
viability in control MCF10a cells. It should be noted that
the concentrations of BPTES in these viability assays
were the same used to completely suppress glutamine
oxidation in substrate oxidation assays. Therefore, titra-
tion of BPTES might reveal a therapeutic concentration
with efficacy in reducing cancer cell viability, but not
that of non-transformed cells. An interesting observation
from this approach was that the multiple measures of
total oxidative capacity varied between the different sub-
strate dependency tests. A technical limitation of this
approach using the XF24 system is that each substrate
needs to be considered in an independent assay.
Whether the differences in total oxidative capacity be-
tween these assays are due to inter-assay variability or
other biological factors, such as circadian regulation of
metabolic flux, needs to be determined.
An important limitation of this study is that cells were

not grown in conditions replicating those encountered
in vivo, where changes in oxygen tension and nutrient
availability induce changes in the metabolic profile of
cancer cells. It must also be recognised that cells in
culture may have undergone epigenetic changes over
time [54] that could influence their bioenergetic profile.
However, the methods described here to systematically
identify metabolic vulnerabilities provide important
proof-of-concept evidence for this approach. As a key
feature of cancer cells is metabolic flexibility, the ability
to identify a particular pathway or macromolecule that is
heavily relied upon, and with little spare capacity, to fuel
the cell has been shown here to be a targetable vulner-
ability. Further studies of tumour cells isolated from ani-
mal models will be necessary to determine whether this
method could be used in patients.

Conclusion
Breast cancer cells display heterogeneous metabolic profiles
even within the same classification; however, systematic

flux profiling can reveal targetable metabolic vulnerabilities
in individual cell lines.
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