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Abstract

Background: Antimetabolite chemotherapeutic agents that target cellular metabolism are widely used in the clinic
and are thought to exert their anti-cancer effects mainly through non-specific cytotoxic effects. However, patients
vary dramatically with respect to treatment outcome, and the sources of heterogeneity remain largely unknown.

Methods: Here, we introduce a computational method for identifying gene expression signatures of response to
chemotherapies and apply it to human tumors and cancer cell lines. Furthermore, we characterize a set of 17
antimetabolite agents in various contexts to investigate determinants of sensitivity to these agents.

Results: We identify distinct favorable and unfavorable metabolic expression signatures for 5-FU and Gemcitabine.
Importantly, we find that metabolic pathways targeted by each of these antimetabolites are specifically enriched
in its expression signatures. We provide evidence against the common notion about non-specific cytotoxic functions
of antimetabolite drugs.

Conclusions: This study demonstrates through unbiased analyses that the activities of metabolic pathways likely
contribute to therapeutic response.

Keywords: Antimetabolite chemotherapies, Molecular determinants of response to chemotherapy, Gemcitabine,
5-fluorouracil

Background
Cancer cells adapt their metabolism to meet the require-
ments of inappropriate growth, survival, and prolife-
ration [1–3]. Since these demands are often not present
in normal cells to the same extent, there is considerable
interest in exploiting metabolic alterations for thera-
peutic advances [4, 5]. Antimetabolite chemotherapies
are one of the most commonly used therapeutic strat-
egies for the treatment of neoplastic disease [6]. Histo-
rically, some of the first successful chemotherapeutic
agents were derived from intermediates in the synthesis
of folates [7, 8]. Subsequently, there are now at least 17
agents approved in the USA that target a specific meta-
bolic enzyme [9]. These agents can often be tolerated
and can achieve remarkable responses in advanced-stage
cancers leading to complete remission in many cases.

However, the clinical responses to these agents are het-
erogeneous with patients exhibiting varying degrees of
sensitivity or resistance.
To date, there is little molecular information that is used

clinically for prognostication for these agents. For in-
stance, 5-fluorouracil (5-FU) is a widely used antime-
tabolite chemotherapy that interferes with pyrimidine
biosynthesis by targeting the enzyme thymidylate synthe-
tase (TYMS). Previous studies that have associated the
expression levels of TYMS and tumor response to 5-FU
have been controversial, and currently, TYMS expression
is not used as a biomarker in clinical decision-making
[10]. Other studies have found TP53 mutational status a
predictor of 5-FU therapy [11, 12]. However, it remains
unclear whether the activities of specific pathways that are
targeted by 5-FU associate with anti-tumor responses.
Notably, a recent metabolomics study provided evidence
that pyrimidine homeostasis is disrupted in response to 5-
FU suggesting metabolic specificity in determinants of
response to this drug [13]. A recent study used a large
panel of cell lines from the catalog of somatic mutations

* Correspondence: jason.locasale@duke.edu
1Duke Cancer Institute, Duke University School of Medicine, Durham, NC
27710, USA
2Duke Molecular Physiology Institute, Duke University School of Medicine,
Durham, NC 27710, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Mehrmohamadi et al. Cancer & Metabolism  (2017) 5:8 
DOI 10.1186/s40170-017-0170-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s40170-017-0170-3&domain=pdf
http://orcid.org/0000-0002-7766-3502
mailto:jason.locasale@duke.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


in cancer (COSMIC) collection and characterized mo-
lecular markers of response to hundreds of different
drugs [11]. This drug panel included a number of anti-
metabolite chemotherapies together with a number of
other agents grouped as “cytotoxic drugs.” This study
comprehensively evaluated thousands of molecular fea-
tures in their ability to act as predictive markers of sen-
sitivity and found the TP53 mutational status as the
most dominant marker for antimetabolite agents such
as 5-FU and Gemcitabine. For 5-FU, a handful of copy
number variants (CNVs) was also found to be pre-
dictive of cell line resistance [11]. However, this study
did not explore gene expression beyond only 11 com-
mon pathways, which found no significant predictors.
It remains to be investigated whether any differences
among antimetabolite agents can be captured in gene
expression signatures of response and whether such
gene expression signatures can add to our power of
distinguishing subtypes with heterogeneous thera-
peutic outcome.
Previous assessments of molecular markers of re-

sponse to chemotherapy have mostly been carried out in
cancer cell lines. The wealth of genomic information on
annotated human tumors now publically available
through the cancer genome atlas (TCGA) allows for
these questions to be addressed in patients in a more
systematic way than previously possible. We and others
have successfully utilized the TCGA to decipher novel
aspects of cancer metabolism using computational
approaches that integrate genomic information on thou-
sands of human tumors [14–18]. A previous study ap-
plied an unbiased investigation of genomic data on
ovarian cancer tumors from the TCGA and specifically
looked for prognostic markers of response to Cisplatin
using progression-free survival of recipients [19]. Despite
difficulties in studying drug response in human patients
in the presence of numerous confounding factors and
heterogeneity in therapeutic regimens, the unbiased
framework introduced in that study provided useful in-
sights on novel genetic and epigenetic subgroups with
variable outcome [19]. This motivated us to apply a
similar approach to identify gene expression subgroups
of response to antimetabolite chemotherapies.
Here, we carry out an investigation of a set of anti-

metabolite chemotherapies that target metabolic en-
zymes. These agents target different pathways including
folate synthesis, nucleotide metabolism, and glutathione
biosynthesis. Instead of analyzing target enzyme expres-
sions, we develop an unbiased approach to identify
gene expression signatures of response. Subsequently,
we assess specificity and heterogeneity in cell line sensi-
tivities to various antimetabolite agents. Together, our
results introduce specific metabolic determinants of
response to these agents.

Methods
Discretizing gene expressions and defining favorability
scores
We considered TCGA’s COAD and PAAD cohorts.
Level-3 RNA-seq RSEM gene-normalized counts were
downloaded for each tumor through the GDC portal
(https://gdc.cancer.gov/). The values were log2 normal-
ized, and in each data set, genes with a count of 2 or
smaller in over 80% of the samples were removed as
low-count genes. We used the following criteria to
discretize the signature gene expression matrix and label
expressions “favorable” or “unfavorable” based on their
relationship with progression-free survival (PFS; time-
zero is date of diagnosis in the corresponding plots). A
gene was assigned a value of 1 and was considered fa-
vorable if its high expression (higher than median plus
half of the standard deviation for that gene) co-
occurred with better prognosis (i.e., patient exhibited
both high expression and good prognosis based on Cox
survival test on the values of expression of a given
gene), and a value of − 1 (unfavorable) if its high ex-
pression co-occurred with poor prognosis in univariate
Cox regression:

F

¼ 1; if Eij ≥ medþ s=2 and j ∈ good survival

¼ −1; if Eij ≥ medþ s=2 and j ∈ poor survival

¼ 0; otherwise

8<
:

where Eij represents expression of gene “i” in individual
tumor “j.”
For discretizing cell line expression data, the following

modified scheme was used where cell lines were labeled
either “sensitive” or “resistant” to a drug if their IC-50
value was at either extreme of the distribution of IC-50
values for that given drug across all cell lines.

F

¼ 1; if Eij ≥ medþ s=2 and j ∈ sensitive

¼ −1; if Eij ≥ medþ s=2 and j ∈ resistant

¼ 0; otherwise

8<
:

where Eij represents expression of gene “i” in cell line “j.”

Genome-wide identification of survival-associated
expression
Progression-free survival times for TCGA’s COAD and
PAAD cohorts were obtained through the cBioPortal for
cancer genomics. We used cancer progression or patient
death as “events” in Cox models and used the last day of
follow-up to right censor the data in cases where no
event was documented. R packages “survival” was used
for univariate survival analyses independently for all
genes (Fig. 1a and Fig. 3a).
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Survival analysis using gene signatures
When considering survival analysis for subgroups iden-
tified by our favorability scoring method (described in
the following), we used the subgroup assignments based
on the k-means clustering of favorability matrix in each
case to label samples as “favorable signature group” and
“unfavorable signature group.” Subsequently, Cox regres-
sion was performed to assess the significance of the dif-
ference between PFS of the two groups as shown in
Fig. 2a and Fig. 3d.

Cross validation
To assess potential over-fitting of our approach for stra-
tifying response subsets, we repeated the favorability scor-
ing and the subsequent clustering using 5-fold cross
validation as follows: we divided the cohort of COAD tu-
mors into five independent test subsets. For each round of
cross validation, we left one of the test subsets out and
performed the survival analysis as described above only on
the remaining four subsets (the training set). We next per-
formed the survival analysis on the test subset using the
training set gene expression data to determine “high”
and “low” expression thresholds for each gene. The
median log likelihood test p value for the significance
of the difference between survival rates of the two
subsets was p = 5.706671e-06 (with standard deviation

of 0.003) on the training and p = 0.019 (with standard
deviation of 0.017) on the test sets.

Cell line sensitivity analyses
For the COSMIC cell lines, RMA-normalized gene ex-
pressions were obtained through the Sanger Institute
(http://cancer.sanger.ac.uk/cosmic). Genes with a coeffi-
cient of variation of 0.05 or smaller were removed. To
test association with drug response, inhibitory concen-
tration (IC-50) values were correlated with gene expres-
sion values and a Kendal tau was calculated. Genes with
a correlation of over 0.2 and an associated p value of
0.01 or less were selected for subsequent discretization
step (Fig. 4a and Additional file 1: Figure S2A).

Gene selection approach
Genes that passed our first filter, i.e., showed a signifi-
cant association with PFS (Cox p value < 0.05), were
subsequently evaluated by additional clinical and genetic
attributes. To eliminate genes whose expression levels
were significantly affected by TP53 mutational status, we
compared expression levels in TP53 mutant with TP53
wild-type samples, and a Wilcoxon non-parametric test
was used to assess statistical difference. This test allowed
filtering out genes significantly associated with TP53
mutation. For other clinical attributes, such as cancer
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Fig. 1 Combined gene expression signatures of response to 5-FU in colon cancer identify novel subgroups. a Schematic of the step-wise filtering
used for gene selection in colon cancer (TCGA COAD). b Hierarchical clustering of heatmap of the discretized gene favorability scores. Columns
represent genes and rows represent individuals. Favorable scores are shown by the color red (F = 1), unfavorable by blue (F = − 1), and neutral by
yellow (F = 0) (see the “Methods” section). c Pathways enriched in the unfavorable gene set. Enrichment p values are calculated using Fisher’s
exact test (see the “Methods” section)
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stage, patient age, tumor grade, and nodal status, the
Spearman correlation was used to test associations be-
tween gene expression and these clinical factors across
samples. Finally, genes that passed all of the above filters
were used for subsequent discretization analyses.

Survival analysis using expression of target enzymes
To assess the strength of direct target enzymes of 5-FU
and Gemcitabine as markers of PFS, we considered ex-
pression levels of TYMS and RRM1 (RRM2), respect-
ively. We first used the function “cutp” in the R package
“survMisc” to find the best cutting point in the continu-
ous gene expression. We then used this cutting point as
a threshold to divide the samples into two groups of
“low” and “high” expression for samples below and
above the cut point, respectively.

Independent cross validation for pancreatic cancer
To validate the clinical significance of the gene signatures
comprised of 665 genes in pancreatic cancer, we looked at
publicly available datasets (Accession: GSE17891) of a

pancreas cohort comprised of 27 patients. First, we clus-
tered the patients based on their 665 gene signatures by
Spearman Rank Correlation Clustering, and there were
two distinct clusters. We performed Kaplan-Meier sur-
vival analysis based on the clustering, and we found that
the gene signature was able to stratify the cohort into two
groups with distinct survival outcomes despite the small
cohort size (n = 27). To compare this result to those of
using single gene expression levels, we performed Kaplan-
Meier analysis for RRM1 and RRM2. We divided the co-
hort into half according to RRM1 and RRM2 gene expres-
sion levels (n = 14 for high gene expression and n = 13 for
low gene expression).

Pathway enrichment analyses
Pathway enrichment analysis was performed on the result-
ing gene list for each cancer type using Enrichr [20]. P
values from the Fisher’s exact test are reported for signifi-
cant (p < 0.05) KEGG pathways (and HumanCyc (https://
humancyc.org/) pathways for potential metabolic signa-
tures not defined by KEGG pathways in detail).
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Fig. 2 Relationship between target enzyme expression and response to 5-FU in colon cancer. a Kaplan-Meier plot showing progression free survival
in the two tumor subgroups identified in Fig. 1b. b Kaplan-Meier plot compares progression free survival in high-TYMS expression vs. low-TYMS
expression subgroups of TCGA COAD patients. c Kaplan-Meier plot compares progression free survival in high-TYMS expression vs. low-TYMS
expression subgroups of stage III TCGA COAD patients
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Analyses of non-gene expression cell attributes
We obtained IC-50 values for the 17 antimetabolite com-
pounds across a panel of 60 cell lines from the National
Cancer Institute (NCI-60) [21]. To complement our gene
expression analyses, we took advantage of the NCI-60
cell line panel where in addition to the comprehensive
annotation of cell lines, a previous study has quantified
the consumption and release rates (CORE) of hundreds
of metabolites by each of these cell lines. We obtained
cell volumes, proliferation rates, CORE values, and
dose-response sensitivity information (IC-50 values) for
17 antimetabolite drugs across this cell line panel
(https://dtp.cancer.gov/discovery_development/nci-60/).
CORE values are positive if a metabolite is released into
the media by cancer cells and is negative if the metabolite
is consumed. The list of these antimetabolic agents is as
follows: Gemcitabine, Methotrexate, Pemetrexed, Thio-
guanine, Thiopurine, Fluorouracil, 5-Fluorouracil deo-
xyriboside, Hydroxyurea, Ara-C, Azacytidine, Cladribine,
Decitabine, Pentostatin, Cytarabine, Fluodarabine phos-
phate, Clofarabine, and Capecitabine.

Growth rate calculations
We obtained growth rate by correcting proliferation
rates for volumes. At time zero—right after the cell div-
ision, the cell volume (V0) is the minimum. At time T1,

the cell gets bigger to V1. If we define growth rate (kg) as
the increase of cell volume per time it takes, we can
come up with the equation below:

V 1 ¼ V 0 þ T 1kg

At doubling time (Td), the cell will divide into two,
and we assume two divided cells will have the same vol-
ume as the initial volume,V0.

V 2 ¼ 2V 0 ¼ V 0 þ Tdkg

V 0 ¼ Tdkg ð1Þ

Td ¼ ln2
kp

ð2Þ

V 0 ¼ ln2
kp

� �
kg ð1; 2Þ

We then solved the above equation to obtain the fol-
lowing equation for growth rate:
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Fig. 3 Combined gene expression signatures of response to Gemcitabine in pancreatic cancer identify novel subgroups. a Schematic of the step-wise
filtering used for gene selection in pancreatic cancer (TCGA PAAD). b Hierarchical clustering of heatmap of the discretized gene favorability scores.
Columns represent genes and rows represent individuals. Favorable scores are shown by the color red (F = 1), unfavorable by blue (F = − 1), and
neutral by yellow (F = 0) (see the “Methods” section). c Pathways enriched in the unfavorable gene set. Enrichment p values are calculated using
Fisher’s exact test. d Kaplan-Meier plot showing the progression free survival in the two tumor subgroups identified in part (b)
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kg ¼ V 0kp
ln2

Results
Gene expression signatures of patient response to
antimetabolite chemotherapies are enriched for
metabolic pathways
To identify gene expression signatures associated with
patients’ response to chemotherapies, we undertook an
unbiased genome-wide selection approach adapted and
modified from a previous framework [19] (Fig. 1a). We
used the TCGA as the source of our clinically annotated
genomic data on human tumors [22]. Progression-free
survival (PFS), a readily available metric of clinical out-
come, was used as a measure of patient response to
chemotherapy. TCGA cancer types in which patients
were treated with a common antimetabolite agent were

considered if both RNA-seq gene expression and follow-
up data were available for a large enough cohort of pa-
tients (N > 50) that would allow quantitative analysis.
Since our goal was to identify subtypes of cancer pa-
tients with “good response” and “poor response,” we
considered each cancer type separately. These criteria
limited our analyses of human data to 5-FU treatment in
colorectal cancers and Gemcitabine treatment in pancre-
atic cancers (see the “Methods” section). Both of these
agents target one-carbon metabolism, a metabolic path-
way that has previously been shown to play diverse
critical roles in cancer initiation, progression, and patho-
genesis [4, 14–16, 23, 24].
A total of 109 colon cancer patients were considered

who received adjuvant 5-FU therapy as part of their
chemotherapy regimen [22]. For this genome-wide
study, we considered all of the genes in the genome after
filtering out low-count mRNA expressions (see the
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Fig. 4 Combined gene expression signatures of response to 5-FU across colon cancer cell lines identify novel subgroups. a Schematic of the
step-wise filtering used for gene selection in colon cancer (COSMIC COAD-READ). b Hierarchical clustering of heatmap of the discretized gene
favorability scores. Columns represent genes and rows represent individuals. Favorable scores are shown by the color red (F = 1), unfavorable
by blue (F = − 1), and neutral by yellow (F = 0) (see the “Methods” section). c Box-plots comparing the resistance to 5-FU (log IC-50 values)
between the two cell line subgroups identified in part (b) (error bars show the range of the data points in each group)
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“Methods” section). We first calculated association be-
tween expression of each gene with PFS using univariate
Cox regression (see the “Methods” section) and excluded
genes that did not show a significant (p < 0.05) associ-
ation (Fig. 1a). Next, we considered the remaining 446
genes and further filtered out stage-, age-, TP53 muta-
tion-, and nodal status-associated genes to eliminate
confounding factors that might affect the association of
genes with 5-FU response (see the “Methods” section).
This filtering leads to a set of 299 genes that were each
individually significantly associated with patient response
to 5-FU in colon cancer, and their relationship to PFS
was independent of stage, age, TP53 mutation, and nodal
status of the tumors (Fig. 1a). Notably, this set included
TYMS—the direct target enzyme of 5-FU.
We next set out to assess the combined power of the

299 genes in separating response subgroups. For this, we
used a scheme previously proposed by Hsu et al. for
DNA methylation [19] and modified the method to
apply to gene expression analysis (see the “Methods”
section). First, we converted the gene expression matrix
into a discretized matrix of “favorability scores,” where a
gene with high expression in a patient in the better
prognosis subgroup was assigned a score of 1 (“favor-
able”), and a gene with high expression co-occurring
with poorer prognosis subgroup was assigned a score of
− 1 (“unfavorable”), and all other cases were assigned a
score of 0 (“neutral”) (see the “Methods” section). The
clustered heatmap of the favorability scores discovered
distinct subsets of genes (favorable vs. unfavorable) as
well as distinct subgroups of patients (Fig. 1b). To assess
the functional relevance of the favorable and unfavorable
gene signatures, we performed gene set enrichment ana-
lysis based on the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathways. The unfavorable gene set was
enriched for the following KEGG pathways: circadian
entrainment (p = 7e-03); nucleotide sugar metabolism
(p = 7e-03); Notch signaling (p = 7e-03); and one-
carbon metabolism (p = 1e-02) (Fig. 1c). TYMS,
SHMT2, GALT, RENBP, and AMDHD2 were among the
metabolic genes that had an unfavorable expression in
colon cancer, meaning that their high expression in pa-
tients treated with 5-FU was associated with poorer
prognosis. Consistent with our results, one-carbon
metabolic fluxes have previously been shown to correl-
ate with sensitivity to 5-FU in vitro and in mice [13].
These observations illustrate the importance of specific
metabolic target pathways of 5-FU in explaining part of
the variability in patient response to this drug. Enrichment
analysis on the favorable gene cluster showed enrichment
of lipid metabolic KEGG pathways (synthesis of unsatur-
ated fatty acids (p = 4e-04) and fatty acid metabolism
(p = 2e-03)), with SCD and ACOX1 fatty acid de-saturases
being among the metabolic genes in this group. Lipid

synthesis has long been known to increase upon carcino-
genesis, producing cellular membrane subunits for rapidly
proliferating cells [25]. However, lipidome analyses have
shown that the role of fatty acids in cancers are more
complex, with an enrichment of saturated fatty acids
causing the loss of membrane fluidity, increase in drug
resistance, and increase in malignancy of cancer cells
[26]. Our results confirm previous studies by identify-
ing fatty acid oxidases and de-saturases SCD and
ACOX1 as favorable enzymes, suggesting a role for
fatty acid metabolism.
To compare the two patient subgroups identified by

our approach, we performed k-means clustering on the
matrix of favorability scores and identified a distinct sub-
group enriched with favorable genes (group 1 in Fig. 1b)
and a second subgroup enriched with unfavorable gene
expression (group 2 in Fig. 1b) (see “Methods” section).
When PFS was compared between these two subgroups,
we found a highly significant difference (Cox p = 3.46e-07,
hazard ratio (HR) = 6.7; Fig. 2a). Interestingly, when limit-
ing the gene expression signatures to 17 metabolic genes
among the 299, we could still see a significant separation
(Cox p = 1.3e-03) suggesting that the metabolic genes
alone are predictive of outcome. To control for potential
bias, we repeated this procedure using 5-fold cross valid-
ation. We found the difference between the two sub-
groups to be significant in all five testing subsets (see
“Methods” section). Next, we assessed the power of TYMS
expression alone in distinguishing response subgroups.
For this, we divided tumors into two groups based on
their TYMS expression level: “low-TYMS” and “high-
TYMS” (see “Methods” section). We then compared PFS
between the two groups using Cox regression and found a
modestly significant difference in response between the
low-TYMS and high-TYMS groups (p = 4.9e-02; Fig. 2b).
Given that adjuvant 5-FU therapy is usually administered
in stage III colon cancer, we repeated this analysis in stage
III tumors only (N = 59) and found a slightly stronger as-
sociation (p = 6e-03; Fig. 2c). In both analyses, we found
that higher expression of TYMS is associated with poorer
response to 5-FU therapy, consistent with previous reports
[27, 28], possibly explained by larger doses of the drug
needed to achieve TYMS inhibition in high-expressing tu-
mors. These results show that our scheme of discretizing
combined gene expression signatures followed by favor-
ability scoring and clustering is able to identify prognosis
subgroups that are significantly more distinct than the
subgroups identified based on TYMS expression alone,
despite TYMS being the direct target of 5-FU and gene
strongly correlated with drug response. Importantly, our
gene expression signatures are not associated with other
prominent clinical predictors of prognosis (e.g., age, stage,
nodal status, and TP53 mutation), as we controlled for
these confounding factors in the gene selection step (see
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the “Methods” section; Fig. 1a). This suggests that the
gene expression signatures identified here offer additional
information about prognosis beyond what is already
captured by commonly used clinical metrics. Since metab-
olism is an interconnected network of reactions that work
in concert; thus, the combined activity of multiple con-
nected genes and pathways results in a better reflection of
the biological state of a tumor than the activity of indi-
vidual enzymes.
We next set out to apply our gene expression analysis

method to an independent TCGA cohort consisting of
pancreatic cancer patients (N = 100) who were treated
with adjuvant Gemcitabine chemotherapy as part of their
chemotherapy regimen. Gemcitabine is another chemo-
therapeutic agent that targets nucleotide and glutathione
metabolism. Gene selection and filtering steps resulted in
a set of 665 genes associated with PFS in this cohort after
controlling for patient age, tumor grade, and TP53 muta-
tional status (Fig. 3a). Visualization of a discretized expres-
sion heatmap made apparent subsets of favorable and
unfavorable genes (Fig. 3b). Pathway analysis of the
favorable gene set showed Glycerophospholipid metabol-
ism (p = 1e-04) pathway being enriched, while the follow-
ing KEGG pathways were enriched in the unfavorable
expression signature: mitotic cell cycle and nuclear div-
ision (p < 10e-9), viral carcinogenesis (p = 2e-04), mis-
match repair (p = 2e-04), apoptosis (p = 8e-03), and
Pyrimidine metabolism (p = 1e-02) (Fig. 3c). Notably, the
unfavorable gene set included ribunucleotide reductases
RRM1 and RRM2—direct targets of Gemcitabine— as well
as DTYMK and TK1 in thymidine metabolism and NT5E
in purine degradation pathways, demonstrating a role
for specific target pathways of Gemcitabine in ex-
plaining the response to this agent. The favorable gene
signature included the following metabolic genes:
PLA2G2D, PLA2G4A, PLA2G4C, and PLD2 phospholi-
pases, LPGAT1, PNPLA6, AGPAT1, and AGPAT4. This
observation further supports previous cancer profiling
studies that have established important structural and
signaling roles for phospholipids in the pathogenesis
and malignancy of cancer cells [25].
We next performed k-means clustering on the matrix

of favorability scores across these 665 genes and iden-
tified clear subgroups of patients. Comparison of the
subgroup enriched with unfavorable gene expression
with that of the favorable subgroup showed a significant
difference in PFS (Cox p = 1.8e-04, HR = 3.5; Fig. 3d).
When limited to 39 metabolic genes among the 665, we
still observed a significant separation of response sub-
groups (Cox p = 1.3e-04). Notably, when considered
individually, RRM1 and RRM2 each had far less distinct-
ive power (Cox p = 6e-03 for RRM1 and p = 5e-03 for
RRM2; Additional file 1: Figure S1A, B) than the com-
bined gene sets, further confirming the advantage of our

approach by considering pathways rather than individual
genes. Together, these results show the relevance of
metabolic states of tumors in predicting drug response
and also confirm the generalizability of this approach in
identifying clinically distinct subgroups of cancer pa-
tients using gene expression signatures. Finally, our sig-
nature of 665 genes was used in a cross validation test
from an independent study on 27 pancreatic cancer
patients (see “Methods” section) [29]. In this cohort
as well, while RRM1 and RRM2 expression were not
capable of subdividing patients with respect to survival on
Gemcitabine (Additional file 1: Figure S1A, B), our gene
signature identified two survival subgroups significantly
different in response (Likelihood ratio test = 4.57 on 1
df, p = 0.0326 Additional file 1: Figure S1C; see the
“Methods” section).

Analysis of gene expression signatures of response
to antimetabolites in cell lines confirms metabolic
specificity
Due to limitations in the availability of sufficiently anno-
tated human data with gene expression and follow-up
information, we next turned to cancer cell line collec-
tions to further test the applicability of our method. We
used the catalog of somatic mutations in cancer (COS-
MIC) cell line set as the largest collection of annotated
cancer cell lines and obtained microarray gene expres-
sion data as well as drug sensitivity information in the
form of 50% of maximal inhibition of cell proliferation
(IC-50) for the same agents we had previously tested in
human samples (i.e., 5-FU and Gemcitabine). In the case
of cell lines, we considered a gene favorable if its high
expression co-occurred with higher sensitivity to drug
treatment (lower IC-50) and unfavorable if its high ex-
pression co-occurred with lower sensitivity (higher IC-
50) (see the “Methods” section).
A set of 44 cell lines from colorectal origin was con-

sidered. For the gene selection step, we calculated the
correlation between expression of every gene in the gen-
ome with IC-50 value for 5-FU and selected genes with
a Kendall’s tau value of 0.2 or larger and a corresponding
p value of 0.01 or smaller. A total of 364 genes passed
this filter (Fig. 4a). Subsequently, the discretization and
favorability scoring approach as described in the previ-
ous section was applied to this matrix and the clustering
heatmap was visualized (Fig. 4b). Distinct subsets were
immediately obvious, with favorable genes enriched in
protein processing (p = 4e-05), arginine and proline me-
tabolism (p = 7e-03), and glutathionie metabolism (p =
8e-03), while the unfavorable genes were not significantly
enriched in any of the KEGG pathways. Notably, Dihydro-
pyrimidine dehydrogenase (DPYD) was the only metabolic
gene identified in the unfavorable set, consistent with its
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biological function [23] and previous reports of its predict-
ive power in 5-FU treated rectal cancers [30].
Next, we compared response to 5-FU between the two

subgroups of cell lines identified by k-means clustering
of the favorability matrix. The subgroup of cells enriched
with the unfavorable gene expression signature had a
significantly higher IC-50 for 5-FU (higher resistance)
than the subgroup enriched with the favorable signature
(Wilcoxon test p = 1.96e-11; Fig. 4c). Together, these re-
sults confirm the generalizability of this method for
identification of novel subgroups with distinct response
to 5-FU and also find a specific metabolic target (DPYD)
as a marker of cell line sensitivity.
We next considered all COSMIC cell lines derived

from pancreatic origins regarding their sensitivity to
Gemcitabine. This set included only 17 cell lines, limit-
ing the statistical power of this analysis. Only 201 genes
passed our initial filtering (Additional file 1: Figure S3A).
A visualization of the favorability heatmap illustrated
two distinct clusters of genes, one with a mostly favor-
able expression score, but the second one with heteroge-
neous scores across the cell lines (Additional file 1:
Figure S3B). Pathway analysis of the favorable set identi-
fied chemical carcinogenesis (p = 7e-03), glutathionie
metabolism (p = 2e-02), and drug metabolism (p = 4e-02)
KEGG pathways significantly enriched, while the un-
favorable set was enriched in adherens junctions (p =
5e-03), cacterial invasion (p = 6e-03), and glycopho-
spholipid synthesis (p = 7e-03). Finally, comparison of
sensitivity to Gemcitabine between two of the cell line
subgroups with distinct signatures revealed a significant
difference in IC-50 (Wilcoxon p value = 8e-04; Additional
file 1: Figure S3C), showing the power of this approach
even when applied to very small data sets. Overall, our
analyses of response to 5-FU and Gemcitabine in cell lines
also confirmed relevance of metabolic determinants of
response; however, we did not observe a perfect corres-
pondence between the markers identified in human stu-
dies and those identified in cell lines. This result is
important given that the majority of experiments aimed at
drug response are typically performed in cell line settings.
Our results suggest that cell line IC-50 values do not per-
fectly mimic cancer outcome in response to chemother-
apies in patients. This is perhaps partly due to culture
conditions and other limitations with using cell lines as
models for cancer and partly explained by the fact that un-
like the controlled experimental settings, the majority of
patients underwent combination chemotherapies that
could partially confound statistical analyses.

Signatures of response to antimetabolite agents exhibit
specificity and variability
So far, our results have shown considerable contribu-
tion from the metabolic gene expression network in

distinguishing drug response subsets within human
tumors as well as cancer cell lines. Careful consider-
ation of two nucleotide metabolism inhibitors—5-FU
in colon and Gemcitabine in pancreatic cancers—re-
vealed subtle differences in gene expression signatures
associated with favorable and unfavorable response in
each case, suggesting antimetabolite agents exert their
function through different cellular pathways in these
tissues and therefore be associated with different cli-
nical markers.
Our approach utilized gene expression levels of meta-

bolic enzymes as surrogates for metabolic fluxes or en-
zyme activities in tumors. Next, we attempted to
complement our results by taking advantage of direct
metabolite measurements across a panel of 60 cancer
cell lines (NCI-60). We calculated correlation between
the metabolic activities in the form of consumption or
release rates (CORE) as previously reported [31], and
IC-50 values of 17 antimetabolite compounds (see the
“Methods” section; Fig. 5a). Interestingly, the release rate
of phosphocholine showed a strong negative correlation
with sensitivity to six of the antimetabolite agents tested
(Fig. 5a). This result suggests that cells that have a
higher rate of phosphocholine production are less sen-
sitive to drug treatments, consistent with our gene ex-
pression results showing the enrichment of phospholipid
metabolic genes in response signatures. Previous studies
have shown that an increase in phosphatidylcholine
affects cancer cell membrane dynamics and correlates
with higher tumor malignancy and poorer overall sur-
vival [25]. Our results agree with previous reports
suggesting high activity of enzymes that degrade phos-
phatidylcholine renders cells more sensitive to drug
treatments, potentially contributing to a more favorable
outcome for chemotherapy [25]. An example of a spe-
cific interaction that was detected at the level of meta-
bolite consumption and release was the case of
Fludarabine—a purine analog—that was significantly
associated with CORE of 2-deoxycytidine (Fig. 5a).
Together, these results identify relationships between
directly measured metabolic signatures of cancer cells
and their sensitivity to antimetabolite chemotherapies,
and also demonstrate variability among the 17 anti-
metabolites tested regarding their interaction with
cellular metabolism.
The gene expression results suggest that despite com-

mon cytotoxic effects of antimetabolite agents, they
might have distinct biological markers in cells that are
specific to their functions. Furthermore, the analysis of
metabolic CORE profiles in cell lines suggested that
markers of sensitivity to antimetabolite agents might be
more variable than previously appreciated. This moti-
vated us to further assess specificity of determinants of
response across a large set of antimetabolite agents. We
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considered a set of 17 antimetabolite chemotherapeutic
compounds (see the “Methods” section). These agents
target enzymes involved in a number of metabolic path-
ways including de novo nucleotide metabolism, amino
acid metabolism, and glutathione metabolism. To assess
the extent of correlation in the sensitivities of cell lines
to these compounds, we computed a similarity matrix of
pairwise Pearson correlations between the IC-50 values
for antimetabolite. Three distinct clusters were identified
by hierarchical clustering: a cluster including Thiopurine
and Thioguanine, a cluster for an anti-folate Methotrex-
ate (MTX) and pyrimidine analogs (5-FU and 5-FUDR),
and a cluster for other purine analogs (Fig. 5b). The anti-
metabolite compounds in the second cluster shared
TYMS as a target enzyme. This analysis suggests that in

general, compounds with common mechanisms of ac-
tion tend to have similar sensitivity profiles across cell
lines, suggesting some degree of specificity in response
to antimetabolites.
A common notion is that cytotoxicity of antimetabol-

ite chemotherapies occurs in all rapidly dividing cells
and thus lacks specificity. It has also been proposed that
cell size, cell proliferation, and cellular metabolism are
invariably coupled [21]. Given that data on proliferation
rate, cell size, and metabolic profiles are readily available
for the NCI-60 cell lines, we sought to re-investigate
these relationships in the context of association with cell
line sensitivities to antimetabolite agents. Spearman rank
correlations between IC-50 and proliferation rate were
computed and revealed significant positive correlations

a

c

b

d e

Fig. 5 Analysis of additional determinants of sensitivity to antimetabolite agents demonstrates variability among these agents. a The significance
of association between metabolic profiles (consumption and release rates (CORE)) and sensitivity to drugs (− log (IC-50)) was assessed using Spearman
correlations (SC) across the NCI-60 cell line panel. The y-axis shows negative log-10 of the corresponding correlation p values for only the significant
associations found (q value < 0.05). b Hierarchical clustering of the Pearson similarity matrix between the IC-50 values of 17 antimetabolite agents
across the NCI-60 panel. The diagonal shows correlation of each drug with itself (= 1). The yellow boxes show three distinct clusters of drugs.
c Spearman correlation coefficient (SCC) between proliferation rate (kp) and sensitivity to each drug (− log (IC-50)) is shown. Solid bars show
significant correlations (FDR-corrected q value < 0.05). d Spearman correlation coefficient (SCC) between cell volume (V) and sensitivity to each
drug (− log (IC-50)) is shown. Solid bars show significant correlations (FDR-corrected q value < 0.05). e Spearman correlation coefficient (SCC) between
growth rate (kg) and sensitivity to each drug (− log (IC-50)) is shown. Solid bars show significant correlations (FDR-corrected q-value < 0.05)
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(q values < 0.05 in all cases except Capecitabine and
Fluodarabine phosphase; Fig. 5c). When the cell vol-
umes were correlated with responses to antimetabolites,
all compounds except for Capecitabine showed a negative
correlation (four compounds had q value < 0.05) (Fig. 5d).
Together, these results confirm that cytotoxicity, as
defined as the concentration of drug needed to achieve
toxic dosages, is lower with smaller cells that also tend to
divide more rapidly due to their size [21]. The significant
negative correlation between proliferation rate and cell
volume suggested that to obtain an overall growth rate
corresponding to the rate of synthesis of macromolecules,
the proliferation rate should be corrected for cell volume
(see the “Methods” section). We next correlated dose re-
sponses with the volume-corrected proliferation rate, re-
ferred to hereinafter as the “growth rate” (Fig. 5e). The
strong correlations that were observed between IC-50
values and proliferation rate were absent when consider-
ing the growth rates (Fig. 5e). This suggests that although
cytotoxicity of antimetabolite agents appears highly non-
specific with selectivity pertaining only to proliferation
rate, these effects are completely removed when consider-
ing an overall growth rate. Importantly, a recent study in-
dependently demonstrated that growth rate inhibition
normalizations correct for confounders in measuring cell
line sensitivity to cancer drugs [32]. Together, our results
provide evidence that unlike the common notion, vari-
ation in response to antimetabolite agents is not explained
solely by differences in the rates of production of macro-
molecules in cells (i.e., growth rate), but is also explained
by specific factors related to the functions of these agents
in cells.

Discussion
The specificity of antimetabolite chemotherapeutic
agents has unclear, and previous reports have been con-
troversial around prognostic values for expression levels
of target enzymes for most of these agents. Given that
the metabolic network is composed of complex interac-
tions between multiple enzymes and pathways, we hy-
pothesized that perhaps by defining gene signatures
instead of individual enzyme markers, we would gain
power in distinguishing subgroups of tumors with differ-
ential response to therapy.
Here, we introduced an unbiased approach for the as-

sessment of combined prognostic power of expression of
multiple genes and used this platform to define favorable
and unfavorable signatures. Notably, we showed that
these signatures allow for distinguishing novel “poor
prognosis” (high progression rate) from “good prognosis”
(low progression rate) subgroups far more robustly than
individual target genes. Importantly, since the gene
selection steps control for expression differences related
to other important clinical and genetic attributes of

response, we are assured that the gene signature analysis
captures information about response subgroups beyond
the already established markers.
In both studied cases of 5-FU in colon cancer and

Gemcitabine in pancreatic cancer, we found that expres-
sion of metabolic pathways related to direct targets of
the drugs is enriched in the unfavorable gene set. This
confirmed that tumors with higher activity of target
pathways require higher doses of drug to elicit the in-
hibitory response and are therefore more resistant to
treatment. However, our results discovered that meta-
bolic state of cells are not fully reflected in the expres-
sion levels of individual target enzymes but rather
captured more robustly in the collection of functionally
and chemically linked enzymes in pathways. Although
we were only able to illustrate the applicability of our
method in two independent cohorts of human tumors
due to data limitations, results suggest generalizability of
this method to other antimetabolite agents as well.
Gene signatures associated with favorable and unfavor-

able response to 5-FU and Gemcitabine exhibited func-
tional similarities overall, but distinct markers for each
drug were also discovered. In both cases of 5-FU and
Gemcitabine, high expressions of the target metabolic
pathways (i.e., nucleotide metabolism) were associated
with unfavorable outcome, while high expression of lipid
metabolizing pathways was associated with favorable
outcome. These results point to common general mech-
anisms of cellular response to these drugs. However, a
deeper look into specific genes and pathway within the
signatures for 5-FU and Gemcitabine identified some
differences. For instance, while “One-carbon metabol-
ism” and “Nucleotide sugar metabolism” were identified
as the unfavorable signature for 5-FU, “Pyrimidine me-
tabolism” was discovered in the case of Gemcitabine.
Furthermore, TYMS was among the unfavorable genes
for 5-FU, while RRM1 and RRM2 were among the un-
favorable genes for Gemcitabine. Together, these results
suggest that despite similarities in overall mechanisms of
action, antimetabolite agents have specific biological
markers that have not been very well characterized and
appreciated in the past.
Our complementary analyses of cancer cell line sensi-

tivities to the same chemotherapeutic agents also proved
useful in identifying distinct subgroups using the gene
signature approach. Other than lipid metabolic genes,
the gene sets identified as favorable and unfavorable sig-
natures in cell lines did not completely match those
identified from the analysis of response in patients. The
main sensitivity predictor in vitro seemed to be “Gluta-
thione metabolism” and “Drug metabolism” that were
found in cases of 5-FU and Gemcitabine to be associated
with favorable outcome (i.e., higher sensitivity of cells to
drug treatment). This observation is consistent with
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previous reports showing a critical role for glutathione
metabolism in detoxification and protection against
drugs in vitro [33]. These results illustrated that despite
the availability and convenience of using cell lines as
models of human tumors for drug response studies, ana-
lysis of patient tumors is advantageous in that it provides
insights that are not fully reflected in cancer cell lines,
potentially due to unwanted effects of culture media.
This lack of concordance between in vitro and in vivo
gene signatures can be interpreted as either differences
in resistance mechanisms or differences in the gene ex-
pression correlates of resistance in vivo and in vitro.
Together, our analyses of human tumors and cancer

cell lines elucidated considerable variability among dif-
ferent antimetabolite agents, as well as specificity in
metabolic markers of sensitivity to them. These demon-
strate that despite the common notion, different classes
of antimetabolite agents vary according to their distinct
cellular functions. Our results suggest that potentially
important biological markers of response to antimetab-
olite compounds exist, and a better understanding of
these factors will provide useful insights for clinical
decision-making. Notably, we showed that gene expres-
sion signatures have significant power to capture part of
the previously unexplained variation in patients’ re-
sponses to 5-FU and Gemcitabine in colon and pancre-
atic cancers, respectively. Future studies using larger
cohorts of human tumors with well-annotated patient
follow-up information can provide valuable additional
insights about antimetabolite response signatures. Im-
portantly, metabolism can not only be targeted with new
drugs, but also by repurposing approved metabolic drugs
for cancer therapy [34]. In general, drugs that target cel-
lular metabolism are of new clinical interest [35], and fu-
ture studies similar to this work are needed to shed light
on identification of patient subgroups that are likely to
benefit from antimetabolite therapies.

Conclusions
This study demonstrates through unbiased analyses of
multiple independent datasets that the activity of meta-
bolic pathways likely contributes to the therapeutic re-
sponse to antimetabolite chemotherapeutic agents that
target these pathways. Importantly, we show that informa-
tion captured by the metabolic network has the potential
of stratifying patients beyond the ability of common
markers currently used in the clinic such as tumor grade
and cancer stage. Areas of translational relevance of these
findings include novel biomarker design based on the
metabolic network, and also identification of patients who
are likely to benefit from antimetabolite chemotherapies.
Together, results presented in this manuscript are of sig-
nificant interest to the cancer and metabolism research

communities and have important and immediate clinical
implications for treatment decision-making.

Additional file

Additional file 1: Supplementary Figures. Figure S1. Relationship
between target enzyme expression and response to Gemcitabine in
TCGA pancreatic cancer. A) Kaplan-Meier plot compares progression free
survival in high-RRM1 expression vs. low-RRM1 expression subgroups of
TCGA PAAD patients. B) Kaplan-Meier plot compares progression free
survival in high-RRM2 expression vs. low-RRM2 expression subgroups
TCGA PAAD patients. Figure S2. Relationship between target enzyme
expression and survival in an independent pancreatic cancer cohort. A)
Kaplan-Meier plot compares overall survival in high-RRM1 expression vs.
low-RRM1 expression subgroups of patients. B) Kaplan-Meier plot com-
pares overall survival in high-RRM2 expression vs. low-RRM2 expression
subgroups of patients. C) Kaplan-Meier plot compares overall survival in
subgroups of patients divided based on our gene signature (see Methods).
Figure S3. Identifying gene expression signatures of sensitivity to
Gemcitabine in pancreatic cancer cell lines. A) Schematic of the step-wise
filtering used for gene selection in pancreatic cancer (COSMIC PAAD). B)
Hierarchical clustering heatmap of the discretized gene favorability scores.
Columns represent genes and rows represent individuals. Favorable scores
are shown by the color red (F=1), unfavorable by blue (F= -1), and neutral
by yellow (F=0) (see Methods). C) Box-plots comparing the resistance
to Gemcitabine (log IC-50 values) between the two cell line subgroups
identified in part B (error bars show the range of the data points in each
group). (DOCX 225 kb)
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