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Abstract

Background: The study of cancer metabolism has been largely dedicated to exploring the hypothesis that oncogenic
transformation rewires cellular metabolism to sustain elevated rates of growth and division. Intense examination of
tumors and cancer cell lines has confirmed that many cancer-associated metabolic phenotypes allow robust growth
and survival; however, little attention has been given to explicitly identifying the biochemical requirements for cell
proliferation in a rigorous manner in the context of cancer metabolism.

Results: Using a well-studied hybridoma line as a model, we comprehensively and quantitatively enumerate the
metabolic requirements for generating new biomass in mammalian cells; this indicated a large biosynthetic
requirement for ATP, NADPH, NAD+, acetyl-CoA, and amino acids. Extension of this approach to serine/glycine and
glutamine metabolic pathways suggested lower limits on serine and glycine catabolism to supply one-carbon unit
synthesis and significant availability of glutamine-derived carbon for biosynthesis resulting from nitrogen demands
alone, respectively. We integrated our biomass composition results into a flux balance analysis model, placing upper
bounds on mitochondrial NADH oxidation to simulate metformin treatment; these simulations reproduced several
empirically observed metabolic phenotypes, including increased reductive isocitrate dehydrogenase flux.

Conclusions: Our analysis clarifies the differential needs for central carbon metabolism precursors, glutamine-derived
nitrogen, and cofactors such as ATP, NADPH, and NAD+, while also providing justification for various extracellular
nutrient uptake behaviors observed in tumors. Collectively, these results demonstrate how stoichiometric
considerations alone can successfully predict empirically observed phenotypes and provide insight into biochemical
dynamics that underlie responses to metabolic perturbations.
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Background
Many parallels exist between the metabolic profiles of
cancer cells and normal proliferating cells, including the
use of aerobic glycolysis, selective expression of metabolic
enzymes with distinct regulatory features, and elevation of
amino acid consumption and biosynthesis [1–6]. Growing
tumors, like any actively dividing tissue, must continu-
ously generate the precursors for macromolecule synthe-
sis, and if the biomass composition is known, it is possible
to determine the minimum rates at which corresponding
anabolic substrates must be provided to maintain a speci-
fied growth rate. However, unlike many microorganisms,

which are capable of synthesizing the entirety of their bio-
mass from a single carbon source and a limited number of
salts [7], mammalian cells depend on a complex medium
comprised of numerous essential carbon and nitrogen
sources [8, 9]. Furthermore, many cancer cells, at least
when grown in culture, require a number of nominally
nonessential substrates to proliferate (e.g., glutamine and
serine), making them conditionally essential for growth
[10–13]. Therefore, in culture and also likely in vivo, can-
cer cells use a variety of nutrients to generate the mono-
mer components of macromolecules, which significantly
complicates analysis of their metabolic pathways.
A central aim of the field of cancer metabolism is to

identify metabolic pathways selectively activated in tumor
cells, which likely include crucial biosynthetic pathways,
to reveal therapeutic targets [14, 15]. To accomplish this
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task, it is necessary to quantify differences in metabolic
flux between transformed cells and their differentiated tis-
sues of origin. This can be achieved by direct examination
of individual metabolite measurements (e.g., assessing
changes in extracellular metabolite concentrations in cul-
ture media to calculate consumption and production
fluxes; evaluating metabolite pool sizes and enrichments
from isotope tracers to indirectly estimate intracellular
fluxes [16–18]) or with sophisticated computational ap-
proaches in which experimental measurements are incor-
porated into a data-fitting model to compute a global
representation of metabolic behavior (e.g., incorporating
extracellular flux and intracellular metabolite isotope la-
beling data to perform metabolic flux analysis; simulating
fluxes in a genome-scale metabolic model constrained by
transcriptomic and proteomic data) [19, 20]. However, all
of these techniques rely heavily on challenging experimen-
tal measurements to infer metabolic trends.
In this investigation, we use fundamental stoichiometric

and mass-balance principles to gain insight into the meta-
bolic behavior of cancer cells using only minimal
information about their proliferative needs. Previous in-
vestigations have similarly used minimal stoichiometric
models to explore the effects of using a variety of objective
functions on metabolic phenotype, the sensitivity of
growth rate and other fluxes to perturbations, and the
consistency between these in silico predictions and empir-
ical measurements in a mammalian cell line [21, 22]. Our
approach, however, is modeled on more elementary ana-
lyses of microbial systems, in which biomass measure-
ments are used to enumerate the corresponding costs in
terms of precursors and cofactors [7]. Starting with the
well-characterized biochemical composition of hybridoma
cells as a model [23], we first give a comprehensive de-
scription of all major anabolic requirements for prolifera-
tion. Next, using these tabulated requirements as a basis,
we perform stoichiometric analyses to identify consequent
implications for one-carbon metabolism and glutamine
uptake. Finally, we demonstrate how a limited flux balance
analysis network can recapitulate observed metabolic be-
havior with a model for metformin treatment, enabling
prediction of cell phenotypes in conditions relevant to
cancer through solely stoichiometric principles.

Methods
Biomass requirements
Weight analysis of biomass composition
Mammalian cell biomass composition was taken from a
study that compiled multiple sources of hybridoma bio-
mass composition measurements in the literature [23].
Biomass macromolecules accounted for 962 mg per g
dry cell weight (DCW), and this macromolecule fraction
was decomposed into its elementary components on a
mass basis (Table 1; see Additional file 1: Tables S1–S3

for component masses of each biomass element). “Essen-
tial” substrates required for direct extracellular uptake
were identified; their weight contributions were consoli-
dated, and their sum was excluded from additional ana-
lysis. The remaining “nonessential” components were
then decomposed into the anabolic precursors from
which they are derived. Eight intermediates in central
carbon metabolism where major catabolic pathways di-
verge into anabolism were designated as carbon sources:
glucose 6-phosphate (G6P), ribose 5-phosphate (R5P), di-
hydroxyacetone phosphate (DHAP), 3-phosphoglycerate
(3PG), pyruvate (Pyr), acetyl-coenzyme A (AcCoA), α-
ketoglutarate (αKG), and oxaloacetate (Oaa) (Fig. 1) [7, 24].
Nitrogen, phosphorus, and sulfur sources were denoted as
NH3, PO4, and SH, respectively, and the “additional” cat-
egory represents the contributions of additional inorganic
substrates (e.g., water, O2, CO2) and hydride groups from
reduced cofactors. The total mass contribution of each
precursor to every macromolecular component was deter-
mined (Additional file 1: Tables S1–S3), and these contri-
butions were then scaled by the molar quantities in the
given biomass composition to give masses of each per g
DCW (Table 1). The “accounted DCW” calculation nor-
malizes DCW percentage values by 962 mg to represent
the fractional contribution of each precursor to all compo-
nents of biomass accounted for by macromolecules. Like-
wise, the “nonessential component DCW” calculation
normalized DCW percentage values by 534 mg, the
weight of macromolecular biomass that can be synthe-
sized de novo.

Table 1 Composition of 1 g DCW on a precursor mass basis,
calculated from hybridoma biomass measurements

Component Weight per
gDCW (mg)

DCW (%) Accounted
DCW (%)

Nonessential
component
DCW (%)

Essential 428 42.8 44.6 –

G6P 47 4.7 4.9 8.8

R5P 26 2.6 2.7 4.9

DHAP 10 1.0 1.1 1.9

3PG 67 6.7 7.0 12.6

Pyr 33 3.3 3.4 6.1

AcCoA 66 6.6 6.9 12.4

Oaa 64 6.4 6.6 12.0

aKG 99 9.9 10.3 18.6

NH3 73 7.3 7.6 13.8

SH 5 0.5 0.5 0.9

PO3 28 2.8 2.9 5.3

Additional 14 1.4 1.5 2.6

Total 962 96.2 100 100

Weight fractions are given for total, accounted, and nonessential
component DCWs
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Precursor and cofactor demands
Using the composition of hybridoma cells retrieved from
the literature as a basis [23] and scaling by the stoichio-
metric coefficients in anabolic reactions (Additional file 1:
Tables S4–S7 and Supplementary Notes) [8, 25, 26], the
molar demands for de novo biomass synthesis were also
calculated in units of mmol/gDCW (Table 2). Precursor de-
mands include the eight previously outlined central car-
bon metabolism intermediates, one-carbon units, and
amine groups. Cofactor demands include ATP, NAD+, and
NADPH. Additionally, molecular oxygen (O2) was in-
cluded. The demands for complete biosynthesis of all non-
essential components (i.e., only essential substrates are
consumed from the extracellular environment) are listed
under the “Synthesis” header. Additionally, these demands
were modified to consider the scenario in which nones-
sential amino acids (NEAAs) and fatty acids (FAs) are
consumed from the surrounding medium, with the results
listed under the “Uptake” header. (Essential fatty acids
such as linoleic and linolenic acids were not explicitly dis-
tinguished in the source literature [23] and are therefore
not considered separately here.)
We did not incorporate the burden of free ATP when

calculating precursor and cofactor demands. Assuming
an intracellular concentration of ATP of 4.7 mM [27], a
cell volume of 1500 fL [28], and a per-cell dry weight of
360 pg [29] leads to an estimate of 0.0019 mmol free
ATP/gDCW that must be synthesized. The corresponding

Fig. 1 Simplified schematic of central carbon metabolism. Rectangular boxes contain branchpoint metabolite intermediates, and rounded rectangular
boxes contain amino acid and fatty acid products that can be incorporated into biomass macromolecules. Arrows indicate carbon flux. Additional
metabolic intermediates are not shown; instead, they are implicitly lumped into pools with displayed metabolites (e.g., fructose 6-phosphate with G6P)

Table 2 Molar precursor and cofactor demands for producing
nonessential biomass components

Precursor/
cofactor

Cellular biosynthesis requirements

Synthesis of nonessential
components

Uptake of nonessential
components

mmol/gDCW fmol/cella mmol/gDCW fmol/cella

G6P 0.289 104 0.289 104

R5P 0.233 83.8 0.233 83.8

DHAP 0.119 42.8 0.119 42.8

3PG 1.24 448 0 0

Pyr 0.600 216 0 0

AcCoA 2.46 893 0.324 117

Oaa 0.760 274 0 0

aKG 1.02 368 0 0

1C 0.255 91.8 0.255 91.8

Nitrogen 4.89 1.76 × 103 0.891 321

O2 0.387 139 0.198 71.3

NAD+ 1.19 428 0.0654 23.5

NADPH 5.21 1.88 × 103 0.607 219

ATP 36.0 1.30 × 104 32.1 1.16 × 104

Demands are shown for two separate cases: (1) where all nonessential amino
acids and fatty acids are synthesized de novo and (2) where all nonessential
amino acids and fatty acids are taken up from the medium. Entries that are
identical between the cases indicate that cells cannot substitute nutrient
consumption for biosynthesis. Entries that are smaller in “Uptake” than “Synthesis”
indicate that cells can substitute nutrient uptake for biosynthesis (by a quantity
equal to the difference)
afmol/cell values assume a DCW of 360 pg/cell
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contribution amounts to an addition of roughly 1.5 % to
the least abundant quantity (1C) and less than 1 % for
other associated components (e.g., R5P, 3PG, nitrogen)
in the “Synthesis” regime (Table 2), and we considered
these values to be sufficiently small to neglect.

Serine, glycine, and one-carbon units
The total serine, glycine, and one-carbon (1C) unit de-
mands per gram DCW were determined by combining
the demands for all biomass components for which they
serve as substrates (Table 3). 1C units were assumed to
be synthesized either from serine catabolism through
serine hydroxymethyltransferase (SHMT) or glycine ca-
tabolism through the glycine cleavage system (GCS); each
pathway was considered separately as the sole source for
1C units, and production through SHMT (GCS) was
added to the total demand for serine (glycine). The de-
mands for serine-, glycine-, and 1C-associated biomass
(Table 3) were subsequently normalized by total (serine/
glycine + 1C) serine or glycine demand to give the frac-
tional fate of each amino acid when it serves as the sole
source for 1C units (Table 4). Glutathione, which is
present at millimolar quantities inside the cell [27], also
requires glycine for its synthesis [8]; however, we assumed
that, since the original measurements that served as the
basis for the tabulated hybridoma composition relied on
quantification of total protein levels per cell and protein
hydrolysis to give the distribution of amino acids [23, 30],
glutathione, as a peptide, has been implicitly considered as
proteinogenic glycine.

Carbon, nitrogen, and glutamine demands
The total cellular carbon and nitrogen molar demands
were determined by taking the cumulative sum of all
biomass components (mmol/gDCW) scaled by their cor-
responding numbers of carbon and nitrogen atoms, re-
spectively (Table 5 and Additional file 1: Table S8) [23].
Essential demands were determined by taking the cumu-
lative sum of all components that cannot be synthesized

de novo (essential amino acids, choline, and ethanol-
amine). Nonessential carbon and nitrogen demands were
determined by subtracting the essential demands from
the total demands.
Our analysis assumes that glutamine must be taken up

from the media. Glutamine is expected to serve as the
primary nitrogen source for macromolecules synthesized
de novo [8, 31, 32], and three different regimes of
obtaining nitrogenous biomass were considered: (1) a
maximum uptake profile, where glutamine was assumed
to serve as the sole source of nitrogen for synthesizing
nonessential molecules; (2) a minimum uptake profile,
where glutamine was assumed to be consumed only for
reactions in which other nitrogen-containing com-
pounds cannot serve as substrates (i.e., proteinogenic
glutamine and reactions that consume the amide-amine
group); and (3) a predicted uptake profile, where glutam-
ine consumption is determined from a simulated stoi-
chiometric network of cells cultured in Dulbecco’s
modified Eagle medium (DMEM) (Table 5). For each
uptake profile, carbon and nitrogen contributions were
calculated by scaling the glutamine consumed by its cor-
responding number of carbon and nitrogen atoms (five
and two, respectively; Additional file 1: Table S8). For
each regime, the carbon (nitrogen) contribution from
glutamine was divided by the total and nonessential cel-
lular carbon (nitrogen) demands calculated previously to
give the fractions of total and nonessential carbon (nitro-
gen) in biomass predicted to be derived from glutamine
(Table 5).

Flux balance analysis
Problem formulation
Flux balance analysis (FBA) [33, 34] was used to gener-
ate optimal metabolic flux distributions that maximize
growth yield and satisfy stoichiometric constraints on
growth. A metabolic model, consisting of 168 metabo-
lites comprising a set ℳ = {1,…, 168} and 152 reactions
comprising a set N ¼ 1;…; 152f g; was used to generate
a 168 × 152 stoichiometric matrix. The reactions cover
major catabolic and anabolic pathways including glycoly-
sis, the pentose phosphate pathway (PPP), the TCA
cycle, the electron transport chain (ETC), one-carbon

Table 3 Molar requirements of serine, glycine, and one-carbon
units for biomass production

Substrate Fate mmol/gDCW

Serine Protein 0.43

Lipid 0.011

Total 0.441

Glycine Protein 0.538

Nucleotide 0.1201

Total 0.6581

One carbon Nucleotide 0.255

Cholesterol Byproduct −0.018

Total 0.237

Table 4 Fates of serine and glycine

Biomass fate Biosynthetic pathway

SHMT GCS

Serine 0.65 –

Glycine – 0.74

One carbon 0.35 0.26

Values represent the fraction of total serine (or glycine) that must be metabolized
through SHMT (or the GCS) to meet the demand for one-carbon units
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metabolism, and de novo synthesis of all major macromol-
ecular constituents heretofore considered (Additional
file 1: Tables S9, S10). The model is further compart-
mentalized into mitochondrial and cytosolic pools for me-
tabolites known to engage in distinctly different behavior
in each (e.g., cofactors, TCA cycle intermediates), and re-
actions constituting the malate-aspartate shuttle were in-
cluded to enable intercompartmental transport of redox
species.
This network was incorporated into the following lin-

ear programming (LP) problem:

min
v

Z

where

Z ¼
XN
n¼1

cnvn

subject to:

S⋅v⇀ ¼ b
⇀

bm ¼ 0; ∀m∈ℳintr

bm∈ℝ; ∀m∈ℳextr

vn≥0; ∀n∈N irrev

vn∈ℝ; ∀n∈N rev

where N = 152 is the total number of reactions, ℳintr is
the set of all intracellular metabolites, ℳextr is the set of
all extracellular metabolites, N irrev is the set of all irre-
versible metabolic reactions, and N rev is the set of all re-
versible metabolic reactions.
The first constraint is a mass balance; S represents the

stoichiometric matrix, v
*

represents the flux vector, and b
*

represents the time-derivative vector of metabolite con-
centrations. The next constraints specify that at steady
state, bm is zero if metabolite m is intracellular and bm is
equal to the specific consumption (or production) flux of
metabolite m if metabolite m is extracellular. The final
constraints state that irreversible reactions can only take
nonnegative values, while reversible reactions can be
assigned any real value. Reactions were primarily

designated to be irreversible if they were recognized as
such by literature and database sources [8, 25, 26]; excep-
tions were made if a theoretically reversible reaction was
known to preferentially operate in a certain direction in
cell culture or in vivo (e.g., net secretion of lactate). Z is a
specified linear combination of metabolic fluxes, which
serves as the objective function for the LP problem.
For our metformin treatment simulation (see below),

we have chosen to maximize the yield of biomass on
carbon. To achieve this, we fixed the specific growth rate
as a basis and chose the coefficients cn such that Z is
equal to the total net carbon consumption rate:

and
cn ¼ carbons

substrate
; ∀n∈N cons

subs

cn ¼ 0; ∀n∉N cons
subs

where N cons
subs is the set of all net consumption reactions for

glucose, glutamine, all nonessential amino acids, and car-
bon dioxide. The set of substrates available for uptake was
based on the composition of DMEM; therefore, of all non-
essential amino acids, only those present in DMEM
(cysteine, glycine, and serine) are permitted to have extra-
cellular fluxes in the direction of net consumption.
Biomass composition values were taken from the lit-

erature [23] as described above, and specific growth rate
was fixed at 0.0289 h−1 (i.e., a doubling time of 24 h)
[35]. Since growth rate was fixed, substrate consumption
rates were left variable and included in the objective
functions in the LP problems to find flux distribution so-
lutions that maximized biomass yield on carbon, as de-
scribed above. For maintenance of ATP cost, we used a
literature estimate of 1.55 mmol gDCW

−1 h−1 [23]. A DCW
of 360 pg/cell was assumed to normalize biomass con-
tent on a per-cell basis [29]. Because optimization of
growth yield alone cannot capture the Warburg effect
[36, 37], a lower limit of lactate production (418 fmol
cell−1 h−1, representative of the highly glycolytic A549
lung carcinoma cell line [16]) was introduced to ensure
that the resulting flux distributions reasonably reproduced
those empirically observed. (As was the case in previous
reports [36, 37], minimization of total carbon alone did
not result in lactate production.) To represent the

Table 5 Glutamine-derived nitrogen and carbon available for biomass contribution

Glutamine uptake profile Contributed mmol/gDCW Glutamine contribution to
total biomass (%)

Glutamine contribution to total
nonessential biomass (%)

Nitrogen Carbon Nitrogen Carbon Nitrogen Carbon

Maximum 4.89 12.2 47.1 29.0 100 57.1

Minimum 1.10 2.75 10.6 6.6 22.5 12.8

Predicted 4.33 10.8 41.6 25.7 88.4 50.5

Biomass contributions are given for maximum, minimum, and predicted glutamine uptake rates. Values are given in mmol/gDCW, as well as percentages of total
and nonessential biomass
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detoxification of reactive oxygen species (ROS), we as-
sumed that 1 % of total oxygen consumed contributes to
the formation of ROS, which must be neutralized by one
equivalent of mitochondrial NADPH [38].
The minimal carbon uptake rate (i.e., the objective

function value Z*, which maximizes biomass yields at the
specified growth rate) was determined using the “lin-
prog” LP solver function in MATLAB (Version 2009b,
Mathworks). However, for a given problem formulation,
there are generally multiple flux distributions that have
this minimal carbon uptake rate. To avoid the possibility
of multiple solutions, we implemented a second opti-
mization program that, in addition to all previously spe-
cified constraints, specifies the carbon uptake rate to be
equal to the minimal rate Z* (determined from the first
problem) and minimizes the two-norm of the flux vector
v. The complete problem is therefore a bilevel opti-
mization [39] that can be represented by the following
formulation:

min
v

ffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

v2i

vuut

subject to

min
v

Z

subject to:

S⋅v⇀ ¼ b
⇀

bm ¼ 0; ∀m∈ℳintr

bm∈ℝ; ∀m∈ℳextr

vn≥0; ∀n∈N irrev

vn∈ℝ; ∀n∈N rev

Metformin treatment simulations
To simulate treatment by metformin, an inhibitor of re-
spiratory complex I, the upper bound of the “ETCNADH”
reaction, which corresponds to the production of 2.5
equivalents of ATP in exchange for the respiration-
linked oxidation of one equivalent of mitochondrial
NADH, was successively decreased. Initially, an uncon-
strained simulation, which used the settings described in
the “Problem formulation” section, was performed to
give a baseline flux distribution reflecting untreated con-
ditions (0 % nhibition of NADH oxidation by ETC). For
all cases that simulated metformin treatment, an upper
bound on the ETCNADH flux was introduced. This upper
bound was set to 80, 60, 40, 20, and 0 % of the baseline
flux value; these conditions were designated 20, 40, 60,
80, and 100 % inhibition of NADH oxidation by ETC,

respectively. All output flux distributions are given in
Additional file 2: Table S14.

Results and discussion
Precursors
We obtained a profile of hybridoma composition from
Sheikh et al. 2005, which used hydrolyzed biomass data
to give an accounting of 96.2 % measured DCW
(Table 1). The additional 3.8 %, which presumably con-
sists of small ions, vitamins, and other free metabolites
and cofactors, is consistent with other estimates for the
DCW fraction comprising free compounds [9, 30, 40].
Of this macromolecular fraction of DCW, essential com-
pounds (i.e., those that must be taken up directly from
the surrounding media or serum, such as choline and es-
sential amino acids) constitute close to half—44.6 %.
The metabolites in the remaining nonessential fraction
can be synthesized de novo from a small set of core cen-
tral carbon intermediates and other major elemental
compounds (i.e., amino, thiol, and phosphate groups),
with glucose, glutamine, and other catabolized amino
acids as the primary carbon sources. The total demand
for each core central carbon metabolite and elemental
compound for synthesis of 1 g dry biomass was com-
puted from the hybridoma biomass composition. Not
surprisingly, almost all of the largest contributors (i.e.,
those which contributed at least 10 % of nonessential
DCW) were associated with protein (e.g., 3PG, Oaa,
αKG, and NH3) (Fig. 2), which itself constitutes nearly
75 % of the total DCW. (The exception, AcCoA, is the
major precursor of lipids.) No one single precursor con-
tributes more than 10 % of the overall DCW.
In addition to their mass contributions to DCW, we

computed the molar requirements of each of the major
precursors, 1C units, O2, and cofactors such as NAD+,
NADPH, and ATP, to give the biosynthetic burden of
complete de novo genesis of nonessential components
(Table 2). The high demand for ATP hydrolysis—at
36.0 mmol/gDCW, at least an order of magnitude larger
than any other requirement—primarily reflects the sig-
nificant free energy burden in polymerizing monosac-
charides, amino acids, and nucleotides, which alone
accounts for an estimated 29.5 mmol/gDCW. The values
of the next greatest requirements—NADPH and AcCoA
and nitrogen, 3PG, and αKG—reflect their substantial
involvement in lipid and amino acid synthesis, respect-
ively. (All other components are required at quantities of
1 mmol/gDCW or less, reflecting the relatively low abun-
dance of ribose, polysaccharide, and the glycerol lipid
backbone compared to other, mostly protein-associated,
components.) It is notable that, in contrast to the use of
NADPH for reducing power, NAD+ is primarily required
for biosynthesis in its oxidized form.

Keibler et al. Cancer & Metabolism  (2016) 4:16 Page 6 of 16



However, this profile assumes complete biosynthesis
of all nonessential compounds starting from glucose,
whereas in practice, many cells will derive significant
contributions to TCA cycle-associated compounds from
glutamine and obtain nonessential amino acids and fatty
acids directly from surrounding media [32, 41–43]. The
effect of such uptake on the biosynthetic burden is shown
in Table 2, with considerable reductions in the needs for
3PG, Pyr, Oaa, αKG, and AcCoA, as well as nitrogen
(which is largely contributed from glutamine and other
nonessential amino acids [32]). Because the majority of
ATP equivalents are used for polymerization, which is not
influenced by substrate uptake, there is not a substantial

reduction in ATP demand. (Although the molar amount
of ATP that must be consumed for growth is greater than
for all other substrates and cofactors, this quantity is still
expected to be less than the ATP maintenance cost for all
but the fastest growing cells. Even assuming extracellular
uptake of all nonessential biosynthetic substrates, the
1.55 mmol ATP gDCW

−1 h−1 expended for cell maintenance
estimated for the hybridoma model [23] exceeds growth-
associated ATP consumption for doubling times longer
than 14.4 h; this doubling time corresponds to faster
growth than exhibited by all NCI-60 panel cell lines [35].)

Serine, glycine, and one-carbon units
A number of recent reports have implicated serine, gly-
cine, and one-carbon metabolism as being important for
tumors. The gene for phosphoglycerate dehydrogenase
(PHGDH), which encodes the enzyme that catalyzes the
first committed step in serine biosynthesis from 3PG, has
been found to be amplified in breast cancer and melanoma
[11, 12]; glycine consumption and catabolism have been
reported to be important for fast proliferation [44, 45]; and
oxidation of tetrahydrofolate (THF) compounds has been
shown to be used for redox control in cancer cells [18, 46].
In addition, 1C units possess well-established roles in nu-
cleotide synthesis, with methylene-THF required for thy-
midylate production and its oxidized form, formyl-THF,
for purine synthesis.
Nucleotide synthesis is essential for cancer cells, as

well as any proliferating cells, to divide. Unlike amino
acids (and potentially lipids), which can be derived from
serum or culture medium to bypass de novo production
[41, 47, 48], nucleotides are not thought to be scavenged
from the extracellular environment in sufficient quan-
tities to contribute to growth. Consequently, many clas-
sic chemotherapeutic drugs directly inhibit various steps
in nucleotide generation, and their administration also
induces a range of side effects resulting from impaired
proliferation of healthy tissue [14, 49]. Nucleotides are
the only major class of macromolecules that require one-
carbon THF compounds; accordingly, there is strong mo-
tivation to understand the production of one-carbon units
in the context of tumor metabolism.
Two major routes exist for methylene-THF generation:

SHMT, which couples one-carbon production to serine
catabolism to glycine, and the GCS, which oxidizes and
deaminates glycine to form methylene-THF, carbon diox-
ide (CO2), and ammonium (NH4

+) (Fig. 3). SHMT has
both cytosolic and mitochondrial isoforms—SHMT1 and
SHMT2, respectively—while the GCS is exclusively mito-
chondrial, although intercompartmental transporters exist
for serine, glycine, and possibly folates [50, 51].
The demand for 1C units for nucleotide (and potentially

NADPH) production places constraints on the fluxes
through the serine-glycine pathway. We investigated these

Fig. 2 Fates of major biomass precursors and cofactor equivalents
consumed in synthesis of macromolecules. Fates of biomass precursors
(3-phosphoglycerate and oxaloacetate), nitrogen/amine groups, and
cofactors (NAD+, NADPH, and ATP) are classified by their requirements
for major classes of macromolecules (proteins, nucleotides, lipids, and
polysaccharides). Demands for each macromolecule include both costs
of polymerization and de novo synthesis of monomers
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constraints by analyzing the biomass requirements of
serine, glycine, and tetrahydrofolate compounds. The
number of millimoles of each substrate required per gram
DCW are given in Table 3; as indicated, the demands for
biosynthetic serine and glycine each surpass those of one-
carbon units, primarily due to the high requirements for
protein synthesis. (Note that each equivalent of cholesterol
generated also produces, as a side product, an equivalent
of formate which can be directly converted to formyl-
THF. The formyl-THF expected to be derived from chol-
esterol synthesis is subtracted from nucleotide one-carbon
requirements.) We considered each extreme case in which
1C substrates are generated exclusively by either serine ca-
tabolism via SHMT or glycine catabolism via the GCS, re-
spectively. In the case of SHMT, approximately 1 mol of
serine must be metabolized through SHMT to produce
1 mol of 1C for every 2 mol of serine incorporated into
biomass (Table 4). In the case of the GCS, it is roughly
1 mol glycine catabolized for every 3 mol glycine incorpo-
rated into biomass (Table 4). As noted above, recent stud-
ies have suggested that significant 1C production is
required for redox control, with SHMT2 being most com-
monly implicated [18, 45, 46]. If one-carbon units are used
for NADPH production for control of oxidative stress in
addition to nucleotide synthesis, the 1C demand will in-
crease and the 1:2 and 1:3 ratios of flux through SHMT or
GCS to direct biomass incorporation become lower
bounds for serine and glycine use; for one-carbon metab-
olism to contribute significantly to NADPH generation,
even larger fractions of the total serine or glycine pool
would need to be catabolized through SHMT or the GCS,
respectively.
These results give insight into some recent findings

about the importance of serine and glycine in the metab-
olism of cancer cells. Previous results have shown an im-
pairment in proliferation in breast cancer cells with
amplified PHGDH copy number when the gene is

knocked down, but this knockdown does not result in a
change in intracellular serine levels and cannot be res-
cued by exogenous serine [11]. As in the case where
SHMT is used to generate one-carbon units through
conversion of serine to glycine, this represents a situ-
ation in which metabolic flux rather than metabolite
levels themselves is important. Although the link be-
tween PHGDH and SHMT is less well understood, regu-
lation of biosynthetic pathways at the committed step is
a common motif in metabolism, so it is plausible that
knockdown of PHGDH may affect the activities of other
enzymes in the pathway, including SHMT. Thus, it may
be that even when exogenous serine is added to the
medium to bypass the PHGDH reaction, the flux through
the serine-glycine pathway, and therefore production of
one-carbon units, is still impaired, this could explain why
exogenous serine cannot rescue the PHGDH knockdown.

Glutamine and nitrogen metabolism
Although glutamine is nominally a nonessential amino
acid (it can be synthesized through the ATP-dependent
condensation of glutamate and free ammonia), it has
been extensively reported that glutamine serves as a
major biosynthetic substrate for cancer cells [13, 32, 52].
In effectively all cases that have been examined, cancer
cells are not able to proliferate in tissue culture if glu-
tamine is absent, and in particular, expression of the
Myc oncogene has been indicated to cause “glutamine
addiction,” with glutamine starvation inducing cell death
[10, 13, 53, 54]. While glutamine has a unique role in
contributing nitrogen to protein and nucleic acid synthe-
sis, its function in maintaining cell viability and division
appear to extend beyond this, as its deaminated catabolic
product αKG appears at least partially able to rescue sur-
vival and/or proliferation under glutamine starvation [55].
Using a stoichiometric analysis, we explored the down-
stream metabolic consequences of glutamine consump-
tion to satisfy cellular nitrogen demand.
Each molecule of glutamine consumed contains two

nitrogen atoms that can contribute to biomass gener-
ation: an “amide” nitrogen that is lost when glutamine is
converted to glutamate and a “transamination” nitrogen
that is lost when glutamine-derived glutamate is con-
verted to αKG. Although these two amine groups are
used by distinct biosynthesis reactions, the amide nitro-
gen, for which there is a considerably smaller biomass
demand, can be converted to a transamination nitrogen
if it is first liberated by glutaminase to become free
ammonia and then added to a molecule of αKG by glu-
tamate dehydrogenase to become the amine group in glu-
tamate (Fig. 4). (This model assumes that GDH operates
reversibly, which, while thought to be unlikely unless am-
monium concentrations are in the range of toxicity, pro-
vides a lower bound estimate of potential glutamine

Fig. 3 Schematic of the major routes of one-carbon unit production.
Serine is catabolized through serine hydroxymethyltransferase (SHMT),
and glycine is catabolized through the glycine cleavage system (GCS).
Intracellular compartmentalization is not shown
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contribution to biomass [56].) As a consequence, our ana-
lysis does not differentiate between the two amine groups.
In addition to its two nitrogen atoms, each glutamine
molecule contains five carbon atoms that may be incorpo-
rated into biomass precursors, such as AcCoA, αKG, or
Oaa. Although assuming that all five carbon atoms may
contribute to biomass likely represents an overestimata-
tion due to the presence of several intermediate decarb-
oxylation reactions, which each evolve one carbon as CO2,
the calculation nonetheless provides a suitable approxima-
tion (in addition to the fact that alternate downstream
pathways, such as reductive carboxylation of αKG to isoci-
trate [16, 57, 58], may result in net CO2 fixation).
We considered three cases: maximum, minimum, and

predicted glutamine contribution to nitrogen supply. The
maximum contribution case assumes that glutamine is the
only nitrogen source available for incorporation into other
nonessential amino acids; the minimum contribution case
assumes that glutamine is used only for direct incorpor-
ation into protein and donation of its amide group for nu-
cleotide synthesis, with all other nonessential amino acids
being taken up directly from the medium; and the pre-
dicted contribution case uses the glutamine consumption
value obtained from a simulation maximizing biomass
yield on total carbon in DMEM nutrient conditions.
The amounts of carbon and nitrogen made available

by glutamine uptake under these three scenarios were
compared to both the total and nonessential carbon and
nitrogen demands for producing new biomass (where
“nonessential” designates requirements that can be syn-
thesized de novo) (Additional file 1: Table S8). Consump-
tion of glutamine to meet nitrogen demand can have a
profound influence on the supply of biosynthetic carbon:
while glutamine contribution under the minimum uptake
profile corresponds to a supply of 22.5 % of nonessential
nitrogen and 12.8 % of nonessential carbon, its maximum
uptake profile corresponds to 100 % of nonessential

nitrogen and 57.1 % nonessential carbon (Table 5). The
“predicted” uptake profile, in which glutamine supplies all
nonessential nitrogen except that needed for cysteine and
approximately two thirds of glycine, corresponds very
closely to maximal contribution, with 88.4 % of nonessen-
tial nitrogen coming from glutamine. In this case, the car-
bon in the glutamine consumed to meet nitrogen demand
is equivalent to roughly half of the total nonessential bio-
synthetic carbon demand.
These results indicate that proliferating cells may in-

corporate significant glutamine-derived carbon into the
precursors for macromolecular synthesis simply as a
consequence of meeting their nitrogen demand. Previous
studies indicate that glutamine-consuming cells excrete
considerable ammonia and, to a lesser extent, glutamate,
which supports the notion of an important role for glu-
tamine beyond nitrogen supply [32, 40, 59, 60]. Whether
these findings reflect an involvement in signaling, kin-
etic/thermodynamic limitations in “efficient” use of ni-
trogen for anabolism or other metabolic factors remains
an open question for the importance of glutamine as a
biosynthetic substrate.

Metformin treatment simulations
Metformin is a safe and widely used biguanide drug that
has long been used to treat type II diabetes. Diabetics
taking metformin have a reduced incidence of cancer
compared to diabetics that control blood sugar by other
means, and a surge of investigations has followed to bet-
ter understand its potential as a cancer therapeutic and
its mechanism of action [61–66]. The compound is a
direct inhibitor of complex I of the respiratory chain,
and although it is believed to trigger numerous down-
stream phenotypic effects, it also induces substantial
short-term, transcription-independent changes in metab-
olism [67, 68]. These changes reflect the robustness of
cell metabolism, and it is important to be able to

Fig. 4 Schematic of the major routes of glutamine contribution to carbon and nitrogen biomass. Deamidation of glutamine to glutamate occurs
either via glutaminase (GLS) or various enzymes in nucleotide biosynthesis pathways. Glutamate subsequently can donate its remaining α carbon
amine group (NH4

+
α-C) to α-keto acids via aminotransferases (ATs) to form amino acids, resulting in conversion of the glutamate carbon skeleton

to αKG. GLS also produces free ammonium (NH4
+
amide), which can subsequently be incorporated into αKG to regenerate glutamate by glutamate

dehydrogenase (GDH)
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anticipate these compensatory effects to identify poten-
tial routes of adaptation [69, 70]. As with other meta-
bolic inhibitors that may be putatively used as cancer
therapeutics, stoichiometric analysis enables the predic-
tion of immediate changes in metabolic fluxes following
metformin treatment.
To model the effects of metformin treatment, we ap-

plied an FBA approach to a stoichiometric model of cen-
tral carbon metabolism and major anabolic pathways.
After first obtaining a baseline profile of steady-state me-
tabolism of cells, we successively decreased the upper
bound on ETC-mediated NADH oxidation to simulate
increasing doses of metformin treatment. The flux alter-
ations revealed by these simulations closely mirrored
many of the behavioral trends observed experimentally in
cancer cells treated with metformin (Fig. 5a; Additional
file 1: Tables S11, Additional file 2: Table S14). As would
be expected for a respiratory inhibitor, decreasing the
upper bound for ETC NADH oxidation reduces the oxy-
gen consumption rate (Fig. 5b); in parallel, glucose con-
sumption and lactate production increase (Fig. 5c, d),
presumably to maintain the ATP production rate under
effectively anaerobic conditions. Interestingly, increasing
levels of inhibition also induce the net direction of the iso-
citrate dehydrogenase (IDH) reactions to move in the re-
ductive direction, as has been observed in cells treated
with metformin and other complex I/III inhibitors (Fig. 5e)
[57, 69, 71]. (It should be noted that the net flux consid-
ered is the sum of all—mitochondrial and cytosolic—IDH
isoform reactions and that net reductive flux is only pre-
dicted in the extreme, complete-inhibition case.) While
this does not contradict previous findings that reductive
IDH flux correlates with a decrease in the citrate-to-αKG
ratio [54, 71], it is encouraging that this behavior can be
predicted as well in a purely stoichiometric model, which
lacks the kinetic and thermodynamic driving forces associ-
ated with metabolite concentration changes. To our
knowledge, this represents the first instance in which an
in silico model has predicted reductive IDH flux following
inhibition of mitochondrial NADH oxidation, and it sug-
gests that the phenomenon can be justified in a purely
stoichiometric manner.
As previously suggested [69, 71–73], a relative de-

crease in the mitochondrial NAD+ regeneration rate ap-
pears to be a factor in the decrease in oxidative TCA
cycle flux. ETC NADH oxidation is overwhelmingly the
major NAD+-producing step in the mitochondria, and
constraining this flux correlates closely with decreases in
the fluxes through pyruvate dehydrogenase (PDH), oxo-
glutarate dehydrogenase (OGDH), and mitochondrial
malate dehydrogenase (MDHm), all of which catalyze
NAD+-consuming mitochondrial reactions (Additional
file 1: Table S12, Additional file 3: Figure S2B–D). While
the inhibition of respiration-linked NADH oxidation

results in a roughly threefold decrease in total mitochon-
drial redox activity (i.e., NAD+ consumption and produc-
tion), this is compensated by an approximately twofold
increase in total cytosolic redox activity (Additional file 1:
Table S13). Primarily, this elevation is accomplished by
roughly proportional increases in the major NAD+-con-
suming and NAD+-producing reactions in the cytosol,
glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
and lactate dehydrogenase (LDH), respectively, resulting
in an increased fraction of glucose being converted to
lactate. In addition, as indicated by lower cytosolic malate
dehydrogenase activity upon simulated metformin treat-
ment, malate-aspartate shuttle activity decreased in coord-
ination with lower oxidative TCA cycle flux; this is
because NADH generated in glycolysis is oxidized in the
cytosol rather than being shuttled into the mitochondria
for OXPHOS. In total, these results reflect the tight regu-
lation between redox-associated steps across major meta-
bolic pathways—complex I activity within the ETC,
NADH oxidation in the TCA cycle, and GAPDH during
and LDH following glycolysis—which, solely by satisfying
stoichiometric mass-balance constraints on redox cofac-
tors, enables robust maintenance of cellular growth and
homeostasis.
We further explored the issue of NAD+ regeneration by

assessing the sensitivity of NAD+-consuming mitochon-
drial reactions (PDH, ODGH, and MDHm) to the pres-
ence of the two non-ETC reactions predicted to oxidize
NADH in the mitochondria, nicotinamide nucleotide
transhydrogenase (NNT), and NAD+-dependent glutam-
ate dehydrogenase (GDHNAD). Previous reports have sug-
gested that NNT can promote reductive IDH flux by
converting mitochondrial NADH to NADPH [57, 74], and
our model predicted NNT to serve as the largest mito-
chondrial NADH sink under high levels of inhibition and
the second-largest mitochondrial NADH sink under
conditions of low (or zero) inhibition (Additional file 1:
Table S12, Additional file 3: Figure S1A). Removal of
NNT from the network produced effectively no changes
in any reactions that consumed NAD+, but GDHNAD, op-
erating in the reverse direction, became the sole reaction
aside from ETC NADH oxidation that regenerated mito-
chondrial NAD+, fully compensating for the loss of
NNT (Additional file 3: Figure S1B–F, Additional file 2:
Table S14). As previously mentioned, GDH activity is not
thought to be reversible under baseline conditions of low
ammonium concentrations [56], so we repeated our simu-
lations (with and without NNT) after constraining all
GDH enzymes to operate irreversibly. The flux distribu-
tions that resulted from using the NNT-absent, GDH-
irreversible model changed substantially from previous
results, with PDH, OGDH, and MDHm fluxes decreasing
considerably (Additional file 3: Figure S1C–E, Additional
file 2: Table S14). These changes became more dramatic
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as ETC inhibition increased, with MDHm operating in the
negative direction upon high levels of inhibition. Under all
conditions, total NADH oxidation was lower than in the

original model (Additional file 3: Figure S1F). Inclusion of
the NNT reaction in the GDH-irreversible network gave a
substantial “rescue” of the metabolic phenotype; NAD+-
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consuming fluxes and total NADH oxidation increased to
values much closer to those in the original network
(Additional file 3: Figure S1A,C–F, Additional file 2:
Table S14). These results support the notion that NNT
conversion of NADH to NADPH can substantially con-
tribute to the metabolic phenotype, particularly under
conditions of inhibited NADH oxidation by the ETC.
As a final step in the analysis of our metformin simu-

lations, we considered how glutamine usage changed
with increasing inhibition of mitochondrial NADH oxi-
dation. Despite dramatic alterations in downstream TCA
cycle metabolism [57, 69], glutamine consumption has
been reported to either increase slightly or remain un-
changed following biguanide treatment [75]. Our simula-
tions provided similar results, predicting a small initial
decrease upon constraining ETC NADH oxidation 20 %
but no change upon further inhibition (Additional file 3:
Figure S2A, Additional file 2: Table S14). However, as
previously mentioned, oxidative TCA cycle reactions re-
sponsible for catabolizing glutamine-derived α-ketoglutarate
decrease (Additional file 3: Figure S2B–D), which is also
consistent with previously reported experimental results
[57, 71]). These decreases in flux are compensated by in-
creases in reductive carboxylation flux, as noted (Fig. 5e).
To assess the general importance of oxidative glutam-

ine metabolism, we modified our objective function so
that glutamine uptake, rather than total carbon uptake,
was minimized. As a consequence, glutamine uptake
dropped to 11.5 fmol cell−1 h−1 (reflecting only direct in-
corporation into protein and contribution of its amide
group to asparagine and nucleotide synthesis), and gluta-
minase flux became zero for all cases (Additional file 2:
Table S14), suggesting that oxidative glutaminolysis is
not necessary for proliferation. The 7.5 fmol cell−1 h−1

decrease in glutamine consumption experienced by
ETC-inhibited simulations was almost completely offset
by a 7.1 fmol cell−1 h−1 increase in pyruvate carboxylase
flux, consistent with reports suggesting that pyruvate
carboxylase is required for growth in cells when gluta-
minase activity is insufficient for anaplerosis [76–78].
Many caveats remain in using this relatively simple

FBA model to understand the behavior of cells treated
by metformin or, through limiting other fluxes, other
metabolic inhibitors. This model assumes that, in re-
sponse to a particular perturbation, cells are freely able
to adjust their metabolic fluxes as necessary to maintain
a previously specified growth rate. Cells, of course, are
limited in their short-term response to stress by the ex-
pression of appropriate enzymes, which involves tran-
scription, translation, and post-translational modifications,
with each process responsive on its own distinct time
scale. The total cell volume and expression of essential
“housekeeping” proteins bound the profile of metabolic
enzymes and, hence, fluxes [79]. (Constraining enzyme

expression by the total solvent capacity or proteome size
is, unlike our approach, able to predict aerobic glycolysis
without setting a lower bound on lactate production
[36, 37].) Further, signaling cascades (such as the AMPK
pathway, which is activated in cells following metformin
treatment unless it has been lost [80–82]) are typically
triggered by such stresses, and the profile of available
fluxes changes following expression of their downstream
products. Finally, many of these fluxes, putatively allowed
even on the basis of enzyme expression, may be infeasible
due to kinetic and thermodynamic constraints, which,
aside from the simplified categorization of reactions on
the basis of their reversibility, are not captured in this ap-
proach. Including additional constraints on fluxes derived
from transcriptomic, proteomic, or physicochemical infor-
mation can overcome some of these limitations and pro-
vide more powerful predictive capabilities, but requires a
larger, more sophisticated model where such data have
been incorporated [19, 36, 37]. While we recognize that it
may not be sufficient for some contexts, our approach
demonstrates that a relatively small (roughly 150 reaction)
stoichiometric network consisting of little more than mass
balances, optimized biomass yield, and a lower bound on
lactate production is nonetheless capable of predicting
metabolic phenotypes in contexts relevant to cancer cells.
A comparably simple approach similar to what we pur-
sued here may be more accessible for biologists who do
not normally perform computational modeling but are
nonetheless interested in simulating metabolic networks
to explore their questions.

Additional discussion
Several additional insights emerge from this analysis.
First, on a carbon-molar basis, the fluxes associated with
biomass production are small compared to the elevated
rates of glucose consumption typical of cancer cells.
Considering only the serine biosynthesis pathway and
assuming complete de novo synthesis of serine, glycine,
and cysteine, cells doubling once per day would require
only 41.4 fmol carbon cell−1 h−1 (Table 2), which would
constitute less than 3 % of carbon flux associated with
glucose consumption (Additional file 1: Table S11). In
fact, at such a growth rate, the carbon required to
synthesize the entire nonessential fraction of biomass is
equivalent to only roughly 15 % of the carbon intake
associated with a typical glucose consumption rate
(Additional file 1: Table S8). These numbers suggest
that, from a purely stoichiometric or mass-action stand-
point, it is very unlikely that the supply of anabolic
needs substantially contributes to the largest fluxes in
central carbon metabolism in cancer cells (i.e., glycoly-
sis). As would be anticipated given the higher biosyn-
thetic demand for ATP than any biomass building
blocks (Table 2), most of the carbon flux is dedicated to
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producing energy (Additional file 1: Table S11). Indeed,
this is consistent with the notion that the distribution of
major metabolic fluxes in cancer cells should be insensi-
tive to their specific biomass composition, as has been
reported in other studies involving FBA simulations [19].
However, the relatively small magnitudes of these ana-
bolic fluxes do not mean that they are “insignificant” or
that they may not serve as promising therapeutic targets
for inhibition. Rather, they suggest that additional factors
beyond stoichiometry strongly influence the cancer cell
metabolic phenotype. Allosteric activation, inhibition,
and post-translational modification of enzymes by me-
tabolites or metabolism-mediated epigenetic changes all
contribute strongly to metabolic regulation in a complex,
bidirectional manner that is difficult to capture using
current models [83–86].
Second, the diverse pathways available to cells for co-

factor production impart them with enhanced adaptabil-
ity and robustness in their ability to survive inhospitable
microenvironments and potential chemical inhibitors.
For the case of ATP, the baseline, uninhibited FBA pre-
dicts a roughly 50 % contribution by glycolysis, which is
near the upper limit of glycolytic contribution to energy
production observed in cancer cells [87] (and largely a
result of the assigned lower bound for lactate production).
However, the simulated metformin treatment demon-
strates how, even approaching complete inhibition of oxi-
dative metabolism, only a roughly twofold increase in
fermentation can maintain ATP production without any
change in growth. Additionally, numerous pathways exist
to allow considerable flexibility for cells to satisfy their
demands for NADPH. The FBA model predicts most
NADPH to be generated from malic enzyme, glutamate
dehydrogenase, nicotinamide nucleotide transhydrogen-
ase, and methylenetetrahydrofolate dehydrogenase, and
presumably minimizes flux through the oxidative PPP as a
consequence of the objective function (maximized bio-
mass yield on carbon) and lower bound on lactate produc-
tion. However, given that the oxidative PPP has been
demonstrated to possess considerable activity, particularly
in response to increased ROS, it too appears to serve a
prominent role in generating reducing equivalents in
tumor cells [18, 51, 88]. This notion of metabolic flexibility
underscores a challenge in targeting cancer cell metabol-
ism, which suggests that combination treatments that
minimize the likelihood of adaptation to selective pressure
may be promising strategies.
Finally, the high rate of glucose consumption, while

enabling the generation of biomass precursors and co-
factors beyond necessary requirements, comes at no ap-
parent cost to the cell under these conditions (i.e., the
specified growth rate and lactate production rate, each
based on tissue culture measurements). Under most in
vitro cell culture conditions, glucose concentrations are

highly relative to physiological levels (e.g., 25 mM vs. 5–
10 mM), and when tumor cells are sufficiently close to
blood vessels, they are afforded access to roughly con-
stant glucose levels. In effect, glucose is “free” for these
cells, and there is no cost to consuming it when it is
available. Although ATP and amino acids are required to
generate the enzymes and transporters needed for high
rates of fermentation, this burden is presumably consid-
ered in the “Protein” biosynthesis demands (Additional
file 1: Table S7), and these do not appear prohibitive to
growth. Additionally, despite the low yield of ATP per
mole glucose consumed, previous analyses using prote-
omic data have suggested that the overflow metabolism
that characterizes the Warburg effect is indeed max-
imally efficient when considering additional constraints
on enzyme levels, such as cellular volume or total protein
cost [37, 89, 90]. Furthermore, continuous supply of high
glycolytic flux may provide a buffering system such that,
in responses to various stresses that may be experienced
in the tumor microenvironment (e.g., oxidative stress, en-
ergy depletion, drug treatment), flux can be easily shunted
to produce substrates (e.g., NADPH, glutathione, ATP)
necessary to maintain growth and evade apoptosis.

Conclusions
In this investigation, we used a series of stoichiometric
analyses to elucidate the metabolic requirements of
mammalian cell proliferation. First, using a hybridoma
line as a model for cancer cell composition, we gener-
ated comprehensive profiles of the major precursor and
cofactor requirements for biomass synthesis on both
mass and stoichiometric bases. These assessments re-
vealed the importance of meeting ATP, NADPH, NAD+,
and precursor demands in synthesizing new biomass
and how these burdens could be selectively reduced by
increasing fatty acid and amino acid uptake. Next, we
applied the generated profiles to explore the limits of
metabolic behavior in two case studies relevant to cancer
cells—the production of 1C units from serine and gly-
cine catabolism, and the contribution of glutamine to
total cellular nitrogen and carbon—which demonstrate
how quantifying biomass demands can yield insight even
in the contexts of metabolic branchpoints. These queries
demonstrated that flux through serine and glycine bio-
synthesis pathways is required for sustaining 1C produc-
tion for nucleotide synthesis and that glutamine may
contribute substantially to biomass carbon as a conse-
quence of its natural role as the predominant nitrogen
source. Finally, we incorporated these biomass require-
ments into a constraint-based FBA simulation that mod-
eled the metabolic effects of metformin, a widely used
antidiabetic medication currently under consideration as
a potential cancer therapeutic. The resulting flux distri-
butions successfully recapitulated the major metabolic
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changes observed in cells following metformin treatment
and also enabled greater understanding of the interac-
tions within the reaction network that contributed to
these changes.
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